Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3 Structured version   Unicode version

Theorem tpid3 3922
 Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid3.1
Assertion
Ref Expression
tpid3

Proof of Theorem tpid3
StepHypRef Expression
1 eqid 2438 . . 3
213mix3i 1132 . 2
3 tpid3.1 . . 3
43eltp 3855 . 2
52, 4mpbir 202 1
 Colors of variables: wff set class Syntax hints:   w3o 936   wceq 1653   wcel 1726  cvv 2958  ctp 3818 This theorem is referenced by:  2pthlem2  21598  ex-pss  21738  kur14lem7  24900  brtpid3  25182  rabren3dioph  26878 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-un 3327  df-sn 3822  df-pr 3823  df-tp 3824
 Copyright terms: Public domain W3C validator