MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm Unicode version

Theorem tpidm 3807
Description: Unordered triple  { A ,  A ,  A } is just an overlong way to write  { A }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm  |-  { A ,  A ,  A }  =  { A }

Proof of Theorem tpidm
StepHypRef Expression
1 tpidm12 3804 . 2  |-  { A ,  A ,  A }  =  { A ,  A }
2 dfsn2 3730 . 2  |-  { A }  =  { A ,  A }
31, 2eqtr4i 2381 1  |-  { A ,  A ,  A }  =  { A }
Colors of variables: wff set class
Syntax hints:    = wceq 1642   {csn 3716   {cpr 3717   {ctp 3718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-v 2866  df-un 3233  df-pr 3723  df-tp 3724
  Copyright terms: Public domain W3C validator