MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpidm23 Unicode version

Theorem tpidm23 3743
Description: Unordered triple  { A ,  B ,  B } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23  |-  { A ,  B ,  B }  =  { A ,  B }

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3735 . 2  |-  { A ,  B ,  B }  =  { B ,  B ,  A }
2 tpidm12 3741 . 2  |-  { B ,  B ,  A }  =  { B ,  A }
3 prcom 3718 . 2  |-  { B ,  A }  =  { A ,  B }
41, 2, 33eqtri 2320 1  |-  { A ,  B ,  B }  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1632   {cpr 3654   {ctp 3655
This theorem is referenced by:  tppreq3  28181  hashtpg  28217
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-un 3170  df-sn 3659  df-pr 3660  df-tp 3661
  Copyright terms: Public domain W3C validator