MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposexg Unicode version

Theorem tposexg 6430
Description: The transposition of a set is a set. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposexg  |-  ( F  e.  V  -> tpos  F  e. 
_V )

Proof of Theorem tposexg
StepHypRef Expression
1 tposssxp 6420 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 dmexg 5071 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 cnvexg 5346 . . . . 5  |-  ( dom 
F  e.  _V  ->  `' dom  F  e.  _V )
42, 3syl 16 . . . 4  |-  ( F  e.  V  ->  `' dom  F  e.  _V )
5 p0ex 4328 . . . 4  |-  { (/) }  e.  _V
6 unexg 4651 . . . 4  |-  ( ( `' dom  F  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( `' dom  F  u.  { (/) } )  e.  _V )
74, 5, 6sylancl 644 . . 3  |-  ( F  e.  V  ->  ( `' dom  F  u.  { (/)
} )  e.  _V )
8 rnexg 5072 . . 3  |-  ( F  e.  V  ->  ran  F  e.  _V )
9 xpexg 4930 . . 3  |-  ( ( ( `' dom  F  u.  { (/) } )  e. 
_V  /\  ran  F  e. 
_V )  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
107, 8, 9syl2anc 643 . 2  |-  ( F  e.  V  ->  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  e. 
_V )
11 ssexg 4291 . 2  |-  ( (tpos 
F  C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  /\  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )  e.  _V )  -> tpos  F  e.  _V )
121, 10, 11sylancr 645 1  |-  ( F  e.  V  -> tpos  F  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717   _Vcvv 2900    u. cun 3262    C_ wss 3264   (/)c0 3572   {csn 3758    X. cxp 4817   `'ccnv 4818   dom cdm 4819   ran crn 4820  tpos ctpos 6415
This theorem is referenced by:  tposex  6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-tpos 6416
  Copyright terms: Public domain W3C validator