MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Unicode version

Theorem tposf12 6301
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )

Proof of Theorem tposf12
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  F : A -1-1-> B )
2 relcnv 5088 . . . . . . 7  |-  Rel  `' A
3 cnvf1o 6259 . . . . . . 7  |-  ( Rel  `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-onto-> `' `' A )
4 f1of1 5509 . . . . . . 7  |-  ( ( x  e.  `' A  |-> 
U. `' { x } ) : `' A
-1-1-onto-> `' `' A  ->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A )
52, 3, 4mp2b 9 . . . . . 6  |-  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A
6 simpl 443 . . . . . . . 8  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  A )
7 dfrel2 5161 . . . . . . . 8  |-  ( Rel 
A  <->  `' `' A  =  A
)
86, 7sylib 188 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' `' A  =  A
)
9 f1eq3 5472 . . . . . . 7  |-  ( `' `' A  =  A  ->  ( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
108, 9syl 15 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> `' `' A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
115, 10mpbii 202 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A )
12 f1dm 5479 . . . . . . . 8  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
131, 12syl 15 . . . . . . 7  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  dom  F  =  A )
1413cnveqd 4894 . . . . . 6  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  `' dom  F  =  `' A )
15 mpteq1 4137 . . . . . 6  |-  ( `' dom  F  =  `' A  ->  ( x  e.  `' dom  F  |->  U. `' { x } )  =  ( x  e.  `' A  |->  U. `' { x } ) )
16 f1eq1 5470 . . . . . 6  |-  ( ( x  e.  `' dom  F 
|->  U. `' { x } )  =  ( x  e.  `' A  |-> 
U. `' { x } )  ->  (
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |->  U. `' { x } ) : `' A -1-1-> A
) )
1714, 15, 163syl 18 . . . . 5  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A  <->  ( x  e.  `' A  |-> 
U. `' { x } ) : `' A -1-1-> A ) )
1811, 17mpbird 223 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )
19 f1co 5484 . . . 4  |-  ( ( F : A -1-1-> B  /\  ( x  e.  `' dom  F  |->  U. `' { x } ) : `' A -1-1-> A )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
201, 18, 19syl2anc 642 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) : `' A -1-1-> B )
2112releqd 4810 . . . . 5  |-  ( F : A -1-1-> B  -> 
( Rel  dom  F  <->  Rel  A ) )
2221biimparc 473 . . . 4  |-  ( ( Rel  A  /\  F : A -1-1-> B )  ->  Rel  dom  F )
23 dftpos2 6293 . . . 4  |-  ( Rel 
dom  F  -> tpos  F  =  ( F  o.  (
x  e.  `' dom  F 
|->  U. `' { x } ) ) )
24 f1eq1 5470 . . . 4  |-  (tpos  F  =  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2522, 23, 243syl 18 . . 3  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> 
(tpos  F : `' A -1-1-> B  <->  ( F  o.  ( x  e.  `' dom  F  |->  U. `' { x } ) ) : `' A -1-1-> B ) )
2620, 25mpbird 223 . 2  |-  ( ( Rel  A  /\  F : A -1-1-> B )  -> tpos  F : `' A -1-1-> B
)
2726ex 423 1  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633   {csn 3674   U.cuni 3864    e. cmpt 4114   `'ccnv 4725   dom cdm 4726    o. ccom 4730   Rel wrel 4731   -1-1->wf1 5289   -1-1-onto->wf1o 5291  tpos ctpos 6275
This theorem is referenced by:  tposf1o2  6302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-1st 6164  df-2nd 6165  df-tpos 6276
  Copyright terms: Public domain W3C validator