MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf1o2 Unicode version

Theorem tposf1o2 6260
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 6259 . . 3  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
2 tposfo2 6257 . . 3  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
31, 2anim12d 546 . 2  |-  ( Rel 
A  ->  ( ( F : A -1-1-> B  /\  F : A -onto-> B )  ->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) ) )
4 df-f1o 5262 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
5 df-f1o 5262 . 2  |-  (tpos  F : `' A -1-1-onto-> B  <->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) )
63, 4, 53imtr4g 261 1  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   `'ccnv 4688   Rel wrel 4694   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254  tpos ctpos 6233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6122  df-2nd 6123  df-tpos 6234
  Copyright terms: Public domain W3C validator