MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo2 Structured version   Unicode version

Theorem tposfo2 6502
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 6501 . . . 4  |-  ( Rel 
A  ->  ( F  Fn  A  -> tpos  F  Fn  `' A ) )
21adantrd 455 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  -> tpos  F  Fn  `' A ) )
3 fndm 5544 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
43releqd 4961 . . . . . . . 8  |-  ( F  Fn  A  ->  ( Rel  dom  F  <->  Rel  A ) )
54biimparc 474 . . . . . . 7  |-  ( ( Rel  A  /\  F  Fn  A )  ->  Rel  dom 
F )
6 rntpos 6492 . . . . . . 7  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )
75, 6syl 16 . . . . . 6  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ran tpos  F  =  ran  F )
87eqeq1d 2444 . . . . 5  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran tpos  F  =  B  <->  ran  F  =  B ) )
98biimprd 215 . . . 4  |-  ( ( Rel  A  /\  F  Fn  A )  ->  ( ran  F  =  B  ->  ran tpos  F  =  B ) )
109expimpd 587 . . 3  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ran tpos  F  =  B ) )
112, 10jcad 520 . 2  |-  ( Rel 
A  ->  ( ( F  Fn  A  /\  ran  F  =  B )  ->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) ) )
12 df-fo 5460 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
13 df-fo 5460 . 2  |-  (tpos  F : `' A -onto-> B  <->  (tpos  F  Fn  `' A  /\  ran tpos  F  =  B ) )
1411, 12, 133imtr4g 262 1  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652   `'ccnv 4877   dom cdm 4878   ran crn 4879   Rel wrel 4883    Fn wfn 5449   -onto->wfo 5452  tpos ctpos 6478
This theorem is referenced by:  tposf2  6503  tposf1o2  6505  tposfo  6506  oppglsm  15276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-fo 5460  df-fv 5462  df-tpos 6479
  Copyright terms: Public domain W3C validator