MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfun Unicode version

Theorem tposfun 6266
Description: The transposition of a function is a function. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposfun  |-  ( Fun 
F  ->  Fun tpos  F )

Proof of Theorem tposfun
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funmpt 5306 . . 3  |-  Fun  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
2 funco 5308 . . 3  |-  ( ( Fun  F  /\  Fun  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
31, 2mpan2 652 . 2  |-  ( Fun 
F  ->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) ) )
4 df-tpos 6250 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
54funeqi 5291 . 2  |-  ( Fun tpos  F 
<->  Fun  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) ) )
63, 5sylibr 203 1  |-  ( Fun 
F  ->  Fun tpos  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3163   (/)c0 3468   {csn 3653   U.cuni 3843    e. cmpt 4093   `'ccnv 4704   dom cdm 4705    o. ccom 4709   Fun wfun 5265  tpos ctpos 6249
This theorem is referenced by:  tposfn2  6272  dualalg  25885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-fun 5273  df-tpos 6250
  Copyright terms: Public domain W3C validator