MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposoprab Unicode version

Theorem tposoprab 6270
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposoprab.1  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
Assertion
Ref Expression
tposoprab  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ph }
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)    F( x, y, z)

Proof of Theorem tposoprab
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tposoprab.1 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  | 
ph }
21tposeqi 6267 . 2  |- tpos  F  = tpos  { <. <. x ,  y
>. ,  z >.  | 
ph }
3 reldmoprab 5932 . . 3  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
4 dftpos3 6252 . . 3  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  -> tpos  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. a ,  b >. ,  c
>.  |  <. b ,  a >. { <. <. x ,  y >. ,  z
>.  |  ph } c } )
53, 4ax-mp 8 . 2  |- tpos  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. a ,  b >. ,  c
>.  |  <. b ,  a >. { <. <. x ,  y >. ,  z
>.  |  ph } c }
6 nfcv 2419 . . . . 5  |-  F/_ y <. b ,  a >.
7 nfoprab2 5898 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
8 nfcv 2419 . . . . 5  |-  F/_ y
c
96, 7, 8nfbr 4067 . . . 4  |-  F/ y
<. b ,  a >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
10 nfcv 2419 . . . . 5  |-  F/_ x <. b ,  a >.
11 nfoprab1 5897 . . . . 5  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
12 nfcv 2419 . . . . 5  |-  F/_ x
c
1310, 11, 12nfbr 4067 . . . 4  |-  F/ x <. b ,  a >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
14 nfv 1605 . . . 4  |-  F/ a
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
15 nfv 1605 . . . 4  |-  F/ b
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
16 opeq12 3798 . . . . . 6  |-  ( ( b  =  x  /\  a  =  y )  -> 
<. b ,  a >.  =  <. x ,  y
>. )
1716ancoms 439 . . . . 5  |-  ( ( a  =  y  /\  b  =  x )  -> 
<. b ,  a >.  =  <. x ,  y
>. )
1817breq1d 4033 . . . 4  |-  ( ( a  =  y  /\  b  =  x )  ->  ( <. b ,  a
>. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  <. x ,  y >. { <. <. x ,  y >. ,  z
>.  |  ph } c ) )
199, 13, 14, 15, 18cbvoprab12 5920 . . 3  |-  { <. <.
a ,  b >. ,  c >.  |  <. b ,  a >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  c >.  |  <. x ,  y >. { <. <.
x ,  y >. ,  z >.  |  ph } c }
20 nfcv 2419 . . . . 5  |-  F/_ z <. x ,  y >.
21 nfoprab3 5899 . . . . 5  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
22 nfcv 2419 . . . . 5  |-  F/_ z
c
2320, 21, 22nfbr 4067 . . . 4  |-  F/ z
<. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c
24 nfv 1605 . . . 4  |-  F/ c
ph
25 breq2 4027 . . . . 5  |-  ( c  =  z  ->  ( <. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  <. x ,  y >. { <. <. x ,  y >. ,  z
>.  |  ph } z ) )
26 df-br 4024 . . . . . 6  |-  ( <.
x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } z  <->  <. <. x ,  y >. ,  z
>.  e.  { <. <. x ,  y >. ,  z
>.  |  ph } )
27 oprabid 5882 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
2826, 27bitri 240 . . . . 5  |-  ( <.
x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } z  <->  ph )
2925, 28syl6bb 252 . . . 4  |-  ( c  =  z  ->  ( <. x ,  y >. { <. <. x ,  y
>. ,  z >.  | 
ph } c  <->  ph ) )
3023, 24, 29cbvoprab3 5922 . . 3  |-  { <. <.
y ,  x >. ,  c >.  |  <. x ,  y >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  z >.  |  ph }
3119, 30eqtri 2303 . 2  |-  { <. <.
a ,  b >. ,  c >.  |  <. b ,  a >. { <. <.
x ,  y >. ,  z >.  |  ph } c }  =  { <. <. y ,  x >. ,  z >.  |  ph }
322, 5, 313eqtri 2307 1  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023   dom cdm 4689   Rel wrel 4694   {coprab 5859  tpos ctpos 6233
This theorem is referenced by:  tposmpt2  6271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-oprab 5862  df-tpos 6234
  Copyright terms: Public domain W3C validator