MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos Unicode version

Theorem tpostpos 6254
Description: Value of the double transposition for a general class 
F. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)

Proof of Theorem tpostpos
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 6239 . 2  |-  Rel tpos tpos  F
2 inss2 3390 . . 3  |-  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )
3 relxp 4794 . . 3  |-  Rel  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
4 relss 4775 . . 3  |-  ( ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X.  _V ) ) 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  ->  ( Rel  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V )  ->  Rel  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) ) ) )
52, 3, 4mp2 17 . 2  |-  Rel  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )
6 relcnv 5051 . . . . . . . . 9  |-  Rel  `' dom tpos  F
7 df-rel 4696 . . . . . . . . 9  |-  ( Rel  `' dom tpos  F  <->  `' dom tpos  F  C_  ( _V 
X.  _V ) )
86, 7mpbi 199 . . . . . . . 8  |-  `' dom tpos  F 
C_  ( _V  X.  _V )
9 simpl 443 . . . . . . . 8  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  `' dom tpos  F )
108, 9sseldi 3178 . . . . . . 7  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  ->  w  e.  ( _V  X.  _V )
)
11 simpr 447 . . . . . . 7  |-  ( ( w F z  /\  w  e.  ( _V  X.  _V ) )  ->  w  e.  ( _V  X.  _V ) )
12 elvv 4748 . . . . . . . . 9  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
13 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. x ,  y
>.  e.  `' dom tpos  F ) )
14 vex 2791 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
15 vex 2791 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
1614, 15opelcnv 4863 . . . . . . . . . . . . . 14  |-  ( <.
x ,  y >.  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
1713, 16syl6bb 252 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  `' dom tpos  F  <->  <. y ,  x >.  e.  dom tpos  F )
)
18 sneq 3651 . . . . . . . . . . . . . . . . 17  |-  ( w  =  <. x ,  y
>.  ->  { w }  =  { <. x ,  y
>. } )
1918cnveqd 4857 . . . . . . . . . . . . . . . 16  |-  ( w  =  <. x ,  y
>.  ->  `' { w }  =  `' { <. x ,  y >. } )
2019unieqd 3838 . . . . . . . . . . . . . . 15  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  U. `' { <. x ,  y >. } )
21 opswap 5159 . . . . . . . . . . . . . . 15  |-  U. `' { <. x ,  y
>. }  =  <. y ,  x >.
2220, 21syl6eq 2331 . . . . . . . . . . . . . 14  |-  ( w  =  <. x ,  y
>.  ->  U. `' { w }  =  <. y ,  x >. )
2322breq1d 4033 . . . . . . . . . . . . 13  |-  ( w  =  <. x ,  y
>.  ->  ( U. `' { w }tpos  F
z  <->  <. y ,  x >.tpos  F z ) )
2417, 23anbi12d 691 . . . . . . . . . . . 12  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) ) )
25 opex 4237 . . . . . . . . . . . . . . 15  |-  <. y ,  x >.  e.  _V
26 vex 2791 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
2725, 26breldm 4883 . . . . . . . . . . . . . 14  |-  ( <.
y ,  x >.tpos  F z  ->  <. y ,  x >.  e.  dom tpos  F )
2827pm4.71ri 614 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  ( <. y ,  x >.  e.  dom tpos  F  /\  <. y ,  x >.tpos  F z ) )
29 brtpos 6243 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( <. y ,  x >.tpos  F z  <->  <. x ,  y
>. F z ) )
3026, 29ax-mp 8 . . . . . . . . . . . . 13  |-  ( <.
y ,  x >.tpos  F z  <->  <. x ,  y
>. F z )
3128, 30bitr3i 242 . . . . . . . . . . . 12  |-  ( (
<. y ,  x >.  e. 
dom tpos  F  /\  <. y ,  x >.tpos  F z )  <->  <. x ,  y >. F z )
3224, 31syl6bb 252 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  <. x ,  y >. F z ) )
33 breq1 4026 . . . . . . . . . . 11  |-  ( w  =  <. x ,  y
>.  ->  ( w F z  <->  <. x ,  y
>. F z ) )
3432, 33bitr4d 247 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3534exlimivv 1667 . . . . . . . . 9  |-  ( E. x E. y  w  =  <. x ,  y
>.  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  <->  w F
z ) )
3612, 35sylbi 187 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  w F z ) )
37 iba 489 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  ->  ( w F z  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
3836, 37bitrd 244 . . . . . . 7  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) ) )
3910, 11, 38pm5.21nii 342 . . . . . 6  |-  ( ( w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e.  ( _V  X.  _V ) ) )
40 elsni 3664 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { (/) }  ->  w  =  (/) )
4140sneqd 3653 . . . . . . . . . . . . . . 15  |-  ( w  e.  { (/) }  ->  { w }  =  { (/)
} )
4241cnveqd 4857 . . . . . . . . . . . . . 14  |-  ( w  e.  { (/) }  ->  `' { w }  =  `' { (/) } )
43 cnvsn0 5141 . . . . . . . . . . . . . 14  |-  `' { (/)
}  =  (/)
4442, 43syl6eq 2331 . . . . . . . . . . . . 13  |-  ( w  e.  { (/) }  ->  `' { w }  =  (/) )
4544unieqd 3838 . . . . . . . . . . . 12  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  U. (/) )
46 uni0 3854 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
4745, 46syl6eq 2331 . . . . . . . . . . 11  |-  ( w  e.  { (/) }  ->  U. `' { w }  =  (/) )
4847breq1d 4033 . . . . . . . . . 10  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/)tpos  F z ) )
49 brtpos0 6241 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( (/)tpos  F z  <->  (/) F z ) )
5026, 49ax-mp 8 . . . . . . . . . 10  |-  ( (/)tpos  F z  <->  (/) F z )
5148, 50syl6bb 252 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  (/) F z ) )
5240breq1d 4033 . . . . . . . . 9  |-  ( w  e.  { (/) }  ->  ( w F z  <->  (/) F z ) )
5351, 52bitr4d 247 . . . . . . . 8  |-  ( w  e.  { (/) }  ->  ( U. `' { w }tpos  F z  <->  w F
z ) )
5453pm5.32i 618 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w  e. 
{ (/) }  /\  w F z ) )
55 ancom 437 . . . . . . 7  |-  ( ( w  e.  { (/) }  /\  w F z )  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5654, 55bitri 240 . . . . . 6  |-  ( ( w  e.  { (/) }  /\  U. `' {
w }tpos  F z
)  <->  ( w F z  /\  w  e. 
{ (/) } ) )
5739, 56orbi12i 507 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  /\  U. `' { w }tpos  F
z )  \/  (
w  e.  { (/) }  /\  U. `' {
w }tpos  F z
) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
58 andir 838 . . . . 5  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  /\  U. `' {
w }tpos  F z
)  \/  ( w  e.  { (/) }  /\  U. `' { w }tpos  F
z ) ) )
59 andi 837 . . . . 5  |-  ( ( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  { (/) } ) )  <->  ( (
w F z  /\  w  e.  ( _V  X.  _V ) )  \/  ( w F z  /\  w  e.  { (/)
} ) ) )
6057, 58, 593bitr4i 268 . . . 4  |-  ( ( ( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  (
w  e.  ( _V 
X.  _V )  \/  w  e.  { (/) } ) ) )
61 elun 3316 . . . . 5  |-  ( w  e.  ( `' dom tpos  F  u.  { (/) } )  <-> 
( w  e.  `' dom tpos  F  \/  w  e. 
{ (/) } ) )
6261anbi1i 676 . . . 4  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( (
w  e.  `' dom tpos  F  \/  w  e.  { (/)
} )  /\  U. `' { w }tpos  F
z ) )
63 brxp 4720 . . . . . . 7  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( ( _V  X.  _V )  u.  { (/) } )  /\  z  e. 
_V ) )
6426, 63mpbiran2 885 . . . . . 6  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  w  e.  ( ( _V  X.  _V )  u.  { (/) } ) )
65 elun 3316 . . . . . 6  |-  ( w  e.  ( ( _V 
X.  _V )  u.  { (/)
} )  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6664, 65bitri 240 . . . . 5  |-  ( w ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z  <->  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) )
6766anbi2i 675 . . . 4  |-  ( ( w F z  /\  w ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) z )  <-> 
( w F z  /\  ( w  e.  ( _V  X.  _V )  \/  w  e.  {
(/) } ) ) )
6860, 62, 673bitr4i 268 . . 3  |-  ( ( w  e.  ( `' dom tpos  F  u.  { (/) } )  /\  U. `' { w }tpos  F
z )  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
69 brtpos2 6240 . . . 4  |-  ( z  e.  _V  ->  (
wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) ) )
7026, 69ax-mp 8 . . 3  |-  ( wtpos tpos  F z  <->  ( w  e.  ( `' dom tpos  F  u.  {
(/) } )  /\  U. `' { w }tpos  F
z ) )
71 brin 4070 . . 3  |-  ( w ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
) z  <->  ( w F z  /\  w
( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) z ) )
7268, 70, 713bitr4i 268 . 2  |-  ( wtpos tpos  F z  <->  w ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) ) z )
731, 5, 72eqbrriv 4782 1  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023    X. cxp 4687   `'ccnv 4688   dom cdm 4689   Rel wrel 4694  tpos ctpos 6233
This theorem is referenced by:  tpostpos2  6255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6234
  Copyright terms: Public domain W3C validator