MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Unicode version

Theorem tpostpos2 6339
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 6338 . 2  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
2 relrelss 5275 . . . 4  |-  ( ( Rel  F  /\  Rel  dom 
F )  <->  F  C_  (
( _V  X.  _V )  X.  _V ) )
3 ssun1 3414 . . . . . 6  |-  ( _V 
X.  _V )  C_  (
( _V  X.  _V )  u.  { (/) } )
4 xpss1 4874 . . . . . 6  |-  ( ( _V  X.  _V )  C_  ( ( _V  X.  _V )  u.  { (/) } )  ->  ( ( _V  X.  _V )  X. 
_V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
53, 4ax-mp 8 . . . . 5  |-  ( ( _V  X.  _V )  X.  _V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
6 sstr 3263 . . . . 5  |-  ( ( F  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
75, 6mpan2 652 . . . 4  |-  ( F 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  F  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
82, 7sylbi 187 . . 3  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
9 df-ss 3242 . . 3  |-  ( F 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  <->  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  =  F )
108, 9sylib 188 . 2  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  =  F )
111, 10syl5eq 2402 1  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642   _Vcvv 2864    u. cun 3226    i^i cin 3227    C_ wss 3228   (/)c0 3531   {csn 3716    X. cxp 4766   dom cdm 4768   Rel wrel 4773  tpos ctpos 6317
This theorem is referenced by:  2oppchomf  13720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-fv 5342  df-tpos 6318
  Copyright terms: Public domain W3C validator