MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Unicode version

Theorem tpostpos2 6255
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 6254 . 2  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
2 relrelss 5196 . . . 4  |-  ( ( Rel  F  /\  Rel  dom 
F )  <->  F  C_  (
( _V  X.  _V )  X.  _V ) )
3 ssun1 3338 . . . . . 6  |-  ( _V 
X.  _V )  C_  (
( _V  X.  _V )  u.  { (/) } )
4 xpss1 4795 . . . . . 6  |-  ( ( _V  X.  _V )  C_  ( ( _V  X.  _V )  u.  { (/) } )  ->  ( ( _V  X.  _V )  X. 
_V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
53, 4ax-mp 8 . . . . 5  |-  ( ( _V  X.  _V )  X.  _V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
6 sstr 3187 . . . . 5  |-  ( ( F  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
75, 6mpan2 652 . . . 4  |-  ( F 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  F  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
82, 7sylbi 187 . . 3  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
9 df-ss 3166 . . 3  |-  ( F 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  <->  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  =  F )
108, 9sylib 188 . 2  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  =  F )
111, 10syl5eq 2327 1  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   _Vcvv 2788    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640    X. cxp 4687   dom cdm 4689   Rel wrel 4694  tpos ctpos 6233
This theorem is referenced by:  2oppchomf  13627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-tpos 6234
  Copyright terms: Public domain W3C validator