MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpostpos2 Structured version   Unicode version

Theorem tpostpos2 6529
Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
tpostpos2  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )

Proof of Theorem tpostpos2
StepHypRef Expression
1 tpostpos 6528 . 2  |- tpos tpos  F  =  ( F  i^i  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
2 relrelss 5422 . . . 4  |-  ( ( Rel  F  /\  Rel  dom 
F )  <->  F  C_  (
( _V  X.  _V )  X.  _V ) )
3 ssun1 3496 . . . . . 6  |-  ( _V 
X.  _V )  C_  (
( _V  X.  _V )  u.  { (/) } )
4 xpss1 5013 . . . . . 6  |-  ( ( _V  X.  _V )  C_  ( ( _V  X.  _V )  u.  { (/) } )  ->  ( ( _V  X.  _V )  X. 
_V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
53, 4ax-mp 5 . . . . 5  |-  ( ( _V  X.  _V )  X.  _V )  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
6 sstr 3342 . . . . 5  |-  ( ( F  C_  ( ( _V  X.  _V )  X. 
_V )  /\  (
( _V  X.  _V )  X.  _V )  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
75, 6mpan2 654 . . . 4  |-  ( F 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  F  C_  (
( ( _V  X.  _V )  u.  { (/) } )  X.  _V )
)
82, 7sylbi 189 . . 3  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  F  C_  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )
9 df-ss 3320 . . 3  |-  ( F 
C_  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V )  <->  ( F  i^i  ( ( ( _V 
X.  _V )  u.  { (/)
} )  X.  _V ) )  =  F )
108, 9sylib 190 . 2  |-  ( ( Rel  F  /\  Rel  dom 
F )  ->  ( F  i^i  ( ( ( _V  X.  _V )  u.  { (/) } )  X. 
_V ) )  =  F )
111, 10syl5eq 2486 1  |-  ( ( Rel  F  /\  Rel  dom 
F )  -> tpos tpos  F  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653   _Vcvv 2962    u. cun 3304    i^i cin 3305    C_ wss 3306   (/)c0 3613   {csn 3838    X. cxp 4905   dom cdm 4907   Rel wrel 4912  tpos ctpos 6507
This theorem is referenced by:  2oppchomf  13981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-fv 5491  df-tpos 6508
  Copyright terms: Public domain W3C validator