Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Unicode version

Theorem tpr2rico 24302
Description: For any point of an open set of the usual topology on  ( RR  X.  RR ) there is an opened square which contains that point and is entirely in the open set. This is square is actually a ball by the  ( l ^  +oo ) norm  X. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0  |-  J  =  ( topGen `  ran  (,) )
tpr2rico.1  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
tpr2rico.2  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
Assertion
Ref Expression
tpr2rico  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Distinct variable groups:    v, u, x, y    x, r, A    B, r    x, G    x, J    x, X    y, r, X
Allowed substitution hints:    A( y, v, u)    B( x, y, v, u)    G( y, v, u, r)    J( y, v, u, r)    X( v, u)

Proof of Theorem tpr2rico
Dummy variables  z  m  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 10912 . . . . . . . . . 10  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
21ixxf 10918 . . . . . . . . 9  |-  (,) :
( RR*  X.  RR* ) --> ~P RR*
3 ffn 5583 . . . . . . . . 9  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR*  ->  (,)  Fn  ( RR*  X.  RR* )
)
42, 3mp1i 12 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  (,)  Fn  ( RR*  X.  RR* ) )
5 elssuni 4035 . . . . . . . . . . . . . 14  |-  ( A  e.  ( J  tX  J )  ->  A  C_ 
U. ( J  tX  J ) )
6 tpr2rico.0 . . . . . . . . . . . . . . . 16  |-  J  =  ( topGen `  ran  (,) )
7 retop 18787 . . . . . . . . . . . . . . . 16  |-  ( topGen ` 
ran  (,) )  e.  Top
86, 7eqeltri 2505 . . . . . . . . . . . . . . 15  |-  J  e. 
Top
9 uniretop 18788 . . . . . . . . . . . . . . . 16  |-  RR  =  U. ( topGen `  ran  (,) )
106unieqi 4017 . . . . . . . . . . . . . . . 16  |-  U. J  =  U. ( topGen `  ran  (,) )
119, 10eqtr4i 2458 . . . . . . . . . . . . . . 15  |-  RR  =  U. J
128, 8, 11, 11txunii 17617 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  = 
U. ( J  tX  J )
135, 12syl6sseqr 3387 . . . . . . . . . . . . 13  |-  ( A  e.  ( J  tX  J )  ->  A  C_  ( RR  X.  RR ) )
1413ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  A  C_  ( RR  X.  RR ) )
15 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  A )
1614, 15sseldd 3341 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( RR  X.  RR ) )
17 xp1st 6368 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 1st `  X )  e.  RR )
1816, 17syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR )
19 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR+ )
2019rpred 10640 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  d  e.  RR )
2120rehalfcld 10206 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR )
2218, 21resubcld 9457 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR )
2322rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  e.  RR* )
2418, 21readdcld 9107 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR )
2524rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  e.  RR* )
26 fnovrn 6213 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
274, 23, 25, 26syl3anc 1184 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
28 xp2nd 6369 . . . . . . . . . . 11  |-  ( X  e.  ( RR  X.  RR )  ->  ( 2nd `  X )  e.  RR )
2916, 28syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR )
3029, 21resubcld 9457 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR )
3130rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  e.  RR* )
3229, 21readdcld 9107 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR )
3332rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  e.  RR* )
34 fnovrn 6213 . . . . . . . 8  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
354, 31, 33, 34syl3anc 1184 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  e.  ran  (,) )
36 eqidd 2436 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
37 xpeq1 4884 . . . . . . . . 9  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( x  X.  y )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y ) )
3837eqeq2d 2446 . . . . . . . 8  |-  ( x  =  ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( x  X.  y )  <-> 
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  y ) ) )
39 xpeq2 4885 . . . . . . . . 9  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  y
)  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
4039eqeq2d 2446 . . . . . . . 8  |-  ( y  =  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) )  ->  ( (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  y )  <->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
4138, 40rspc2ev 3052 . . . . . . 7  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  e.  ran  (,)  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  E. x  e.  ran  (,)
E. y  e.  ran  (,) ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4227, 35, 36, 41syl3anc 1184 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
43 eqid 2435 . . . . . . 7  |-  ( x  e.  ran  (,) , 
y  e.  ran  (,)  |->  ( x  X.  y
) )  =  ( x  e.  ran  (,) ,  y  e.  ran  (,)  |->  ( x  X.  y
) )
44 vex 2951 . . . . . . . 8  |-  x  e. 
_V
45 vex 2951 . . . . . . . 8  |-  y  e. 
_V
4644, 45xpex 4982 . . . . . . 7  |-  ( x  X.  y )  e. 
_V
4743, 46elrnmpt2 6175 . . . . . 6  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  e.  ran  ( x  e.  ran  (,)
,  y  e.  ran  (,)  |->  ( x  X.  y
) )  <->  E. x  e.  ran  (,) E. y  e.  ran  (,) ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  =  ( x  X.  y
) )
4842, 47sylibr 204 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e. 
ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) ) )
49 tpr2rico.2 . . . . 5  |-  B  =  ran  ( x  e. 
ran  (,) ,  y  e. 
ran  (,)  |->  ( x  X.  y ) )
5048, 49syl6eleqr 2526 . . . 4  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
5150ralrimiva 2781 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B )
52 xpss 4974 . . . . . . 7  |-  ( RR 
X.  RR )  C_  ( _V  X.  _V )
5352, 16sseldi 3338 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( _V  X.  _V )
)
5418rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  RR* )
5519rphalfcld 10652 . . . . . . . . 9  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( d  /  2 )  e.  RR+ )
5618, 55ltsubrpd 10668 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X ) )
5718, 55ltaddrpd 10669 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) )
58 elioo1 10948 . . . . . . . . 9  |-  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 1st `  X
)  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  <->  ( ( 1st `  X )  e. 
RR*  /\  ( ( 1st `  X )  -  ( d  /  2
) )  <  ( 1st `  X )  /\  ( 1st `  X )  <  ( ( 1st `  X )  +  ( d  /  2 ) ) ) ) )
5923, 25, 58syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 1st `  X
)  e.  RR*  /\  (
( 1st `  X
)  -  ( d  /  2 ) )  <  ( 1st `  X
)  /\  ( 1st `  X )  <  (
( 1st `  X
)  +  ( d  /  2 ) ) ) ) )
6054, 56, 57, 59mpbir3and 1137 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) ) )
6129rexrd 9126 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  RR* )
6229, 55ltsubrpd 10668 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X ) )
6329, 55ltaddrpd 10669 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) )
64 elioo1 10948 . . . . . . . . 9  |-  ( ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR* )  ->  (
( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  <->  ( ( 2nd `  X )  e. 
RR*  /\  ( ( 2nd `  X )  -  ( d  /  2
) )  <  ( 2nd `  X )  /\  ( 2nd `  X )  <  ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
6531, 33, 64syl2anc 643 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) )  <-> 
( ( 2nd `  X
)  e.  RR*  /\  (
( 2nd `  X
)  -  ( d  /  2 ) )  <  ( 2nd `  X
)  /\  ( 2nd `  X )  <  (
( 2nd `  X
)  +  ( d  /  2 ) ) ) ) )
6661, 62, 63, 65mpbir3and 1137 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( 2nd `  X )  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )
6760, 66jca 519 . . . . . 6  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  e.  ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  /\  ( 2nd `  X
)  e.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
68 elxp7 6371 . . . . . 6  |-  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  <->  ( X  e.  ( _V  X.  _V )  /\  ( ( 1st `  X )  e.  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  /\  ( 2nd `  X )  e.  ( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) ) ) ) )
6953, 67, 68sylanbrc 646 . . . . 5  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
7069ralrimiva 2781 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )
71 mnfle 10721 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  -  ( d  /  2 ) )  e.  RR*  ->  -oo  <_  ( ( 1st `  X
)  -  ( d  /  2 ) ) )
7223, 71syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  -oo  <_  (
( 1st `  X
)  -  ( d  /  2 ) ) )
73 pnfge 10719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_  +oo )
7425, 73syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 1st `  X )  +  ( d  /  2
) )  <_  +oo )
75 mnfxr 10706 . . . . . . . . . . . . . . . . . 18  |-  -oo  e.  RR*
76 pnfxr 10705 . . . . . . . . . . . . . . . . . 18  |-  +oo  e.  RR*
77 ioossioo 24126 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  -oo  e.  RR*  /\ 
+oo  e.  RR* )  /\  (  -oo  <_  ( ( 1st `  X )  -  ( d  /  2
) )  /\  (
( 1st `  X
)  +  ( d  /  2 ) )  <_  +oo ) )  -> 
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) ) 
C_  (  -oo (,)  +oo ) )
7875, 76, 77mpanl12 664 . . . . . . . . . . . . . . . . 17  |-  ( ( 
-oo  <_  ( ( 1st `  X )  -  (
d  /  2 ) )  /\  ( ( 1st `  X )  +  ( d  / 
2 ) )  <_  +oo )  ->  ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  (  -oo (,)  +oo ) )
7972, 74, 78syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  (  -oo (,)  +oo ) )
80 ioomax 10977 . . . . . . . . . . . . . . . 16  |-  (  -oo (,) 
+oo )  =  RR
8179, 80syl6sseq 3386 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  C_  RR )
82 mnfle 10721 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  -  ( d  /  2 ) )  e.  RR*  ->  -oo  <_  ( ( 2nd `  X
)  -  ( d  /  2 ) ) )
8331, 82syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  -oo  <_  (
( 2nd `  X
)  -  ( d  /  2 ) ) )
84 pnfge 10719 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 2nd `  X
)  +  ( d  /  2 ) )  e.  RR*  ->  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_  +oo )
8533, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( ( 2nd `  X )  +  ( d  /  2
) )  <_  +oo )
86 ioossioo 24126 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  -oo  e.  RR*  /\ 
+oo  e.  RR* )  /\  (  -oo  <_  ( ( 2nd `  X )  -  ( d  /  2
) )  /\  (
( 2nd `  X
)  +  ( d  /  2 ) )  <_  +oo ) )  -> 
( ( ( 2nd `  X )  -  (
d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  / 
2 ) ) ) 
C_  (  -oo (,)  +oo ) )
8775, 76, 86mpanl12 664 . . . . . . . . . . . . . . . . 17  |-  ( ( 
-oo  <_  ( ( 2nd `  X )  -  (
d  /  2 ) )  /\  ( ( 2nd `  X )  +  ( d  / 
2 ) )  <_  +oo )  ->  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  (  -oo (,)  +oo ) )
8883, 85, 87syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  (  -oo (,)  +oo ) )
8988, 80syl6sseq 3386 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )
90 xpss12 4973 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) ) 
C_  RR  /\  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) )  C_  RR )  ->  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9181, 89, 90syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( RR  X.  RR ) )
9291sselda 3340 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( RR  X.  RR ) )
9392expcom 425 . . . . . . . . . . . 12  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  x  e.  ( RR  X.  RR ) ) )
9493ancld 537 . . . . . . . . . . 11  |-  ( x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  ->  (
( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) ) ) )
9594imdistanri 673 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
9613adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  A  C_  ( RR  X.  RR ) )
97 simpr1 963 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  A )
9896, 97sseldd 3341 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( J 
tX  J )  /\  ( X  e.  A  /\  d  e.  RR+  /\  x  e.  ( RR  X.  RR ) ) )  ->  X  e.  ( RR  X.  RR ) )
99983anassrs 1175 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  X  e.  ( RR  X.  RR ) )
100 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  x  e.  ( RR  X.  RR ) )
101 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR+ )
102101rphalfcld 10652 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
d  /  2 )  e.  RR+ )
103 tpr2rico.1 . . . . . . . . . . . . . . 15  |-  G  =  ( u  e.  RR ,  v  e.  RR  |->  ( u  +  (
_i  x.  v )
) )
104103cnre2csqima 24301 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ( RR 
X.  RR )  /\  x  e.  ( RR  X.  RR )  /\  (
d  /  2 )  e.  RR+ )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
10599, 100, 102, 104syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) ) )
106 eqid 2435 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
107103, 6, 106cnrehmeo 18970 . . . . . . . . . . . . . . . . . . . 20  |-  G  e.  ( ( J  tX  J )  Homeo  ( TopOpen ` fld )
)
108106cnfldtopon 18809 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
109108toponunii 16989 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  =  U. ( TopOpen ` fld )
11012, 109hmeof1o 17788 . . . . . . . . . . . . . . . . . . . 20  |-  ( G  e.  ( ( J 
tX  J )  Homeo  (
TopOpen ` fld ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
111 f1of 5666 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR )
--> CC )
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  G :
( RR  X.  RR )
--> CC
113112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) --> CC )
114113, 99ffvelrnd 5863 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  X )  e.  CC )
115112a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  G :
( RR  X.  RR )
--> CC )
116115ffvelrnda 5862 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  CC )
117 sqsscirc2 24299 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G `  X )  e.  CC  /\  ( G `  x
)  e.  CC )  /\  d  e.  RR+ )  ->  ( ( ( abs `  ( Re
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
)  /\  ( abs `  ( Im `  (
( G `  x
)  -  ( G `
 X ) ) ) )  <  (
d  /  2 ) )  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
) )
118114, 116, 101, 117syl21anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
) )
119118imp 419 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( abs `  (
( G `  x
)  -  ( G `
 X ) ) )  <  d )
120101rpxrd 10641 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  d  e.  RR* )
121120adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  d  e.  RR* )
122 cnxmet 18799 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
123121, 122jctil 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  d  e.  RR* ) )
124114adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  X )  e.  CC )
125116adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  CC )
126124, 125jca 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  X )  e.  CC  /\  ( G `
 x )  e.  CC ) )
127 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
128127cnmetdval 18797 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G `  x
)  e.  CC  /\  ( G `  X )  e.  CC )  -> 
( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  =  ( abs `  ( ( G `  x )  -  ( G `  X )
) ) )
129125, 124, 128syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  =  ( abs `  ( ( G `  x )  -  ( G `  X ) ) ) )
130 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( abs `  ( ( G `  x )  -  ( G `  X )
) )  <  d
)
131129, 130eqbrtrd 4224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
)
132 elbl3 18414 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  -> 
( ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  <->  ( ( G `  x )
( abs  o.  -  )
( G `  X
) )  <  d
) )
133132biimpar 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( abs 
o.  -  )  e.  ( * Met `  CC )  /\  d  e.  RR* )  /\  ( ( G `
 X )  e.  CC  /\  ( G `
 x )  e.  CC ) )  /\  ( ( G `  x ) ( abs 
o.  -  ) ( G `  X )
)  <  d )  ->  ( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
134123, 126, 131, 133syl21anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  ( abs `  ( ( G `
 x )  -  ( G `  X ) ) )  <  d
)  ->  ( G `  x )  e.  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
135119, 134syldan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  (
( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )
136135ex 424 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( ( abs `  (
Re `  ( ( G `  x )  -  ( G `  X ) ) ) )  <  ( d  /  2 )  /\  ( abs `  ( Im
`  ( ( G `
 x )  -  ( G `  X ) ) ) )  < 
( d  /  2
) )  ->  ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
137105, 136syld 42 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
138 f1ocnv 5679 . . . . . . . . . . . . . . 15  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14  |-  `' G : CC -1-1-onto-> ( RR  X.  RR )
140 f1ofun 5668 . . . . . . . . . . . . . 14  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  Fun  `' G
)
141139, 140ax-mp 8 . . . . . . . . . . . . 13  |-  Fun  `' G
142 f1odm 5670 . . . . . . . . . . . . . . 15  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  dom  `' G  =  CC )
143139, 142ax-mp 8 . . . . . . . . . . . . . 14  |-  dom  `' G  =  CC
144116, 143syl6eleqr 2526 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( G `  x )  e.  dom  `' G )
145 funfvima 5965 . . . . . . . . . . . . 13  |-  ( ( Fun  `' G  /\  ( G `  x )  e.  dom  `' G
)  ->  ( ( G `  x )  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `  x
) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
146141, 144, 145sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( G `  x
)  e.  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d )  ->  ( `' G `  ( G `
 x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
147107, 110mp1i 12 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  G : ( RR  X.  RR ) -1-1-onto-> CC )
148 f1ocnvfv1 6006 . . . . . . . . . . . . . . 15  |-  ( ( G : ( RR 
X.  RR ) -1-1-onto-> CC  /\  x  e.  ( RR  X.  RR ) )  -> 
( `' G `  ( G `  x ) )  =  x )
149147, 100, 148syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  ( `' G `  ( G `
 x ) )  =  x )
150149eleq1d 2501 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  <->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) ) )
151150biimpd 199 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
( `' G `  ( G `  x ) )  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
152137, 146, 1513syld 53 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  ->  (
x  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
153152imp 419 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( RR  X.  RR ) )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
15495, 153syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( J  tX  J
)  /\  X  e.  A )  /\  d  e.  RR+ )  /\  x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) )  ->  x  e.  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
155154ex 424 . . . . . . . 8  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( x  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  ->  x  e.  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) ) ) )
156155ssrdv 3346 . . . . . . 7  |-  ( ( ( A  e.  ( J  tX  J )  /\  X  e.  A
)  /\  d  e.  RR+ )  ->  ( (
( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
157156ralrimiva 2781 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) ) )
158103mpt2fun 6164 . . . . . . . . . 10  |-  Fun  G
159158a1i 11 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  Fun  G )
16013sselda 3340 . . . . . . . . . 10  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  ( RR 
X.  RR ) )
161 f1odm 5670 . . . . . . . . . . 11  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  dom  G  =  ( RR  X.  RR ) )
162107, 110, 161mp2b 10 . . . . . . . . . 10  |-  dom  G  =  ( RR  X.  RR )
163160, 162syl6eleqr 2526 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  dom  G
)
164 simpr 448 . . . . . . . . 9  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  X  e.  A )
165 funfvima 5965 . . . . . . . . . 10  |-  ( ( Fun  G  /\  X  e.  dom  G )  -> 
( X  e.  A  ->  ( G `  X
)  e.  ( G
" A ) ) )
166165imp 419 . . . . . . . . 9  |-  ( ( ( Fun  G  /\  X  e.  dom  G )  /\  X  e.  A
)  ->  ( G `  X )  e.  ( G " A ) )
167159, 163, 164, 166syl21anc 1183 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( G `  X
)  e.  ( G
" A ) )
168 hmeoima 17789 . . . . . . . . . . 11  |-  ( ( G  e.  ( ( J  tX  J ) 
Homeo  ( TopOpen ` fld ) )  /\  A  e.  ( J  tX  J
) )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
169107, 168mpan 652 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  ( G " A )  e.  ( TopOpen ` fld ) )
170106cnfldtopn 18808 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
171170elmopn2 18467 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  e.  ( * Met `  CC )  ->  ( ( G
" A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) ) )
172122, 171ax-mp 8 . . . . . . . . . . 11  |-  ( ( G " A )  e.  ( TopOpen ` fld )  <->  ( ( G
" A )  C_  CC  /\  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) ) )
173172simprbi 451 . . . . . . . . . 10  |-  ( ( G " A )  e.  ( TopOpen ` fld )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
174169, 173syl 16 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  A. m  e.  ( G " A
) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
175174adantr 452 . . . . . . . 8  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  A. m  e.  ( G " A ) E. d  e.  RR+  ( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
176 oveq1 6080 . . . . . . . . . . 11  |-  ( m  =  ( G `  X )  ->  (
m ( ball `  ( abs  o.  -  ) ) d )  =  ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d ) )
177176sseq1d 3367 . . . . . . . . . 10  |-  ( m  =  ( G `  X )  ->  (
( m ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  <->  ( ( G `  X )
( ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
178177rexbidv 2718 . . . . . . . . 9  |-  ( m  =  ( G `  X )  ->  ( E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  <->  E. d  e.  RR+  ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d )  C_  ( G " A ) ) )
179178rspcva 3042 . . . . . . . 8  |-  ( ( ( G `  X
)  e.  ( G
" A )  /\  A. m  e.  ( G
" A ) E. d  e.  RR+  (
m ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A ) )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
180167, 175, 179syl2anc 643 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A ) )
181 imass2 5232 . . . . . . . . . 10  |-  ( ( ( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  -> 
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) ) )
182 f1of1 5665 . . . . . . . . . . . . 13  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -1-1-> CC )
183107, 110, 182mp2b 10 . . . . . . . . . . . 12  |-  G :
( RR  X.  RR ) -1-1-> CC
184 f1imacnv 5683 . . . . . . . . . . . 12  |-  ( ( G : ( RR 
X.  RR ) -1-1-> CC  /\  A  C_  ( RR  X.  RR ) )  -> 
( `' G "
( G " A
) )  =  A )
185183, 13, 184sylancr 645 . . . . . . . . . . 11  |-  ( A  e.  ( J  tX  J )  ->  ( `' G " ( G
" A ) )  =  A )
186185sseq2d 3368 . . . . . . . . . 10  |-  ( A  e.  ( J  tX  J )  ->  (
( `' G "
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  ( `' G " ( G " A ) )  <->  ( `' G " ( ( G `
 X ) (
ball `  ( abs  o. 
-  ) ) d ) )  C_  A
) )
187181, 186syl5ib 211 . . . . . . . . 9  |-  ( A  e.  ( J  tX  J )  ->  (
( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
188187reximdv 2809 . . . . . . . 8  |-  ( A  e.  ( J  tX  J )  ->  ( E. d  e.  RR+  (
( G `  X
) ( ball `  ( abs  o.  -  ) ) d )  C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
189188adantr 452 . . . . . . 7  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  ( E. d  e.  RR+  ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) 
C_  ( G " A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
)
190180, 189mpd 15 . . . . . 6  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )
191 r19.29 2838 . . . . . 6  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  E. d  e.  RR+  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
192157, 190, 191syl2anc 643 . . . . 5  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A ) )
193 sstr 3348 . . . . . 6  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)
194193reximi 2805 . . . . 5  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  /\  ( `' G " ( ( G `  X ) ( ball `  ( abs  o.  -  ) ) d ) )  C_  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
195192, 194syl 16 . . . 4  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A )
196 r19.29 2838 . . . 4  |-  ( ( A. d  e.  RR+  X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  E. d  e.  RR+  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
)  ->  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )
19770, 195, 196syl2anc 643 . . 3  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( X  e.  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  /\  (
( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
198 r19.29 2838 . . 3  |-  ( ( A. d  e.  RR+  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  E. d  e.  RR+  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
19951, 197, 198syl2anc 643 . 2  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. d  e.  RR+  ( ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
200 eleq2 2496 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( X  e.  r  <-> 
X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) ) ) )
201 sseq1 3361 . . . . 5  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( r  C_  A  <->  ( ( ( ( 1st `  X )  -  (
d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  / 
2 ) ) )  X.  ( ( ( 2nd `  X )  -  ( d  / 
2 ) ) (,) ( ( 2nd `  X
)  +  ( d  /  2 ) ) ) )  C_  A
) )
202200, 201anbi12d 692 . . . 4  |-  ( r  =  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  -> 
( ( X  e.  r  /\  r  C_  A )  <->  ( X  e.  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) ) )
203202rspcev 3044 . . 3  |-  ( ( ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
204203rexlimivw 2818 . 2  |-  ( E. d  e.  RR+  (
( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  e.  B  /\  ( X  e.  ( ( ( ( 1st `  X
)  -  ( d  /  2 ) ) (,) ( ( 1st `  X )  +  ( d  /  2 ) ) )  X.  (
( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  /\  ( ( ( ( 1st `  X )  -  ( d  / 
2 ) ) (,) ( ( 1st `  X
)  +  ( d  /  2 ) ) )  X.  ( ( ( 2nd `  X
)  -  ( d  /  2 ) ) (,) ( ( 2nd `  X )  +  ( d  /  2 ) ) ) )  C_  A ) )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
205199, 204syl 16 1  |-  ( ( A  e.  ( J 
tX  J )  /\  X  e.  A )  ->  E. r  e.  B  ( X  e.  r  /\  r  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   class class class wbr 4204    X. cxp 4868   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873    o. ccom 4874   Fun wfun 5440    Fn wfn 5441   -->wf 5442   -1-1->wf1 5443   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340   CCcc 8980   RRcr 8981   _ici 8984    + caddc 8985    x. cmul 8987    +oocpnf 9109    -oocmnf 9110   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   2c2 10041   RR+crp 10604   (,)cioo 10908   Recre 11894   Imcim 11895   abscabs 12031   TopOpenctopn 13641   topGenctg 13657   * Metcxmt 16678   ballcbl 16680  ℂfldccnfld 16695   Topctop 16950    tX ctx 17584    Homeo chmeo 17777
This theorem is referenced by:  dya2iocnei  24624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cn 17283  df-cnp 17284  df-tx 17586  df-hmeo 17779  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900
  Copyright terms: Public domain W3C validator