Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Structured version   Unicode version

Theorem tpss 3956
 Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1
tpss.2
tpss.3
Assertion
Ref Expression
tpss

Proof of Theorem tpss
StepHypRef Expression
1 unss 3513 . 2
2 df-3an 938 . . 3
3 tpss.1 . . . . 5
4 tpss.2 . . . . 5
53, 4prss 3944 . . . 4
6 tpss.3 . . . . 5
76snss 3918 . . . 4
85, 7anbi12i 679 . . 3
92, 8bitri 241 . 2
10 df-tp 3814 . . 3
1110sseq1i 3364 . 2
121, 9, 113bitr4i 269 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   w3a 936   wcel 1725  cvv 2948   cun 3310   wss 3312  csn 3806  cpr 3807  ctp 3808 This theorem is referenced by:  1cubr  20672  constr3trllem1  21627  rabren3dioph  26830 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-in 3319  df-ss 3326  df-sn 3812  df-pr 3813  df-tp 3814
 Copyright terms: Public domain W3C validator