MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpss Unicode version

Theorem tpss 3900
Description: A triplet of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypotheses
Ref Expression
tpss.1  |-  A  e. 
_V
tpss.2  |-  B  e. 
_V
tpss.3  |-  C  e. 
_V
Assertion
Ref Expression
tpss  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )

Proof of Theorem tpss
StepHypRef Expression
1 unss 3457 . 2  |-  ( ( { A ,  B }  C_  D  /\  { C }  C_  D )  <-> 
( { A ,  B }  u.  { C } )  C_  D
)
2 df-3an 938 . . 3  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D ) )
3 tpss.1 . . . . 5  |-  A  e. 
_V
4 tpss.2 . . . . 5  |-  B  e. 
_V
53, 4prss 3888 . . . 4  |-  ( ( A  e.  D  /\  B  e.  D )  <->  { A ,  B }  C_  D )
6 tpss.3 . . . . 5  |-  C  e. 
_V
76snss 3862 . . . 4  |-  ( C  e.  D  <->  { C }  C_  D )
85, 7anbi12i 679 . . 3  |-  ( ( ( A  e.  D  /\  B  e.  D
)  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
92, 8bitri 241 . 2  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  ( { A ,  B }  C_  D  /\  { C }  C_  D ) )
10 df-tp 3758 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110sseq1i 3308 . 2  |-  ( { A ,  B ,  C }  C_  D  <->  ( { A ,  B }  u.  { C } ) 
C_  D )
121, 9, 113bitr4i 269 1  |-  ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  <->  { A ,  B ,  C }  C_  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717   _Vcvv 2892    u. cun 3254    C_ wss 3256   {csn 3750   {cpr 3751   {ctp 3752
This theorem is referenced by:  1cubr  20542  constr3trllem1  21478  rabren3dioph  26560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894  df-un 3261  df-in 3263  df-ss 3270  df-sn 3756  df-pr 3757  df-tp 3758
  Copyright terms: Public domain W3C validator