Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tratrb Structured version   Unicode version

Theorem tratrb 28621
Description: If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD 28974. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tratrb  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem tratrb
StepHypRef Expression
1 nfv 1630 . . . 4  |-  F/ x Tr  A
2 nfra1 2757 . . . 4  |-  F/ x A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
)
3 nfv 1630 . . . 4  |-  F/ x  B  e.  A
41, 2, 3nf3an 1850 . . 3  |-  F/ x
( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)
5 nfv 1630 . . . . 5  |-  F/ y Tr  A
6 nfra2 2761 . . . . 5  |-  F/ y A. x  e.  A  A. y  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
)
7 nfv 1630 . . . . 5  |-  F/ y  B  e.  A
85, 6, 7nf3an 1850 . . . 4  |-  F/ y ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)
9 simpl 445 . . . . . . . 8  |-  ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  y )
109a1i 11 . . . . . . 7  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  x  e.  y ) )
11 simpr 449 . . . . . . . 8  |-  ( ( x  e.  y  /\  y  e.  B )  ->  y  e.  B )
1211a1i 11 . . . . . . 7  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  y  e.  B ) )
13 pm3.2an3 1134 . . . . . . 7  |-  ( x  e.  y  ->  (
y  e.  B  -> 
( B  e.  x  ->  ( x  e.  y  /\  y  e.  B  /\  B  e.  x
) ) ) )
1410, 12, 13ee22 1372 . . . . . 6  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  ( B  e.  x  ->  ( x  e.  y  /\  y  e.  B  /\  B  e.  x
) ) ) )
15 en3lp 7673 . . . . . 6  |-  -.  (
x  e.  y  /\  y  e.  B  /\  B  e.  x )
16 con3 129 . . . . . 6  |-  ( ( B  e.  x  -> 
( x  e.  y  /\  y  e.  B  /\  B  e.  x
) )  ->  ( -.  ( x  e.  y  /\  y  e.  B  /\  B  e.  x
)  ->  -.  B  e.  x ) )
1714, 15, 16syl6mpi 61 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  -.  B  e.  x
) )
18 eleq2 2498 . . . . . . . . 9  |-  ( x  =  B  ->  (
y  e.  x  <->  y  e.  B ) )
1918biimprcd 218 . . . . . . . 8  |-  ( y  e.  B  ->  (
x  =  B  -> 
y  e.  x ) )
2012, 19syl6 32 . . . . . . 7  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  ( x  =  B  ->  y  e.  x
) ) )
21 pm3.2 436 . . . . . . 7  |-  ( x  e.  y  ->  (
y  e.  x  -> 
( x  e.  y  /\  y  e.  x
) ) )
2210, 20, 21ee23 1374 . . . . . 6  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  ( x  =  B  ->  ( x  e.  y  /\  y  e.  x ) ) ) )
23 en2lp 7572 . . . . . 6  |-  -.  (
x  e.  y  /\  y  e.  x )
24 con3 129 . . . . . 6  |-  ( ( x  =  B  -> 
( x  e.  y  /\  y  e.  x
) )  ->  ( -.  ( x  e.  y  /\  y  e.  x
)  ->  -.  x  =  B ) )
2522, 23, 24syl6mpi 61 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  -.  x  =  B ) )
26 simp3 960 . . . . . 6  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  B  e.  A )
27 simp1 958 . . . . . . . . 9  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  A
)
28 trel 4310 . . . . . . . . . . 11  |-  ( Tr  A  ->  ( (
y  e.  B  /\  B  e.  A )  ->  y  e.  A ) )
2928exp3a 427 . . . . . . . . . 10  |-  ( Tr  A  ->  ( y  e.  B  ->  ( B  e.  A  ->  y  e.  A ) ) )
3027, 12, 26, 29ee121 28588 . . . . . . . . 9  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  y  e.  A ) )
31 trel 4310 . . . . . . . . . 10  |-  ( Tr  A  ->  ( (
x  e.  y  /\  y  e.  A )  ->  x  e.  A ) )
3231exp3a 427 . . . . . . . . 9  |-  ( Tr  A  ->  ( x  e.  y  ->  ( y  e.  A  ->  x  e.  A ) ) )
3327, 10, 30, 32ee122 28589 . . . . . . . 8  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  x  e.  A ) )
34 ralcom2 2873 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  A. y  e.  A  A. x  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
35343ad2ant2 980 . . . . . . . 8  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  A. y  e.  A  A. x  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y ) )
36 rspsbc2 28619 . . . . . . . 8  |-  ( B  e.  A  ->  (
x  e.  A  -> 
( A. y  e.  A  A. x  e.  A  ( x  e.  y  \/  y  e.  x  \/  x  =  y )  ->  [. x  /  x ]. [. B  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y ) ) ) )
3726, 33, 35, 36ee121 28588 . . . . . . 7  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  [. x  /  x ]. [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
38 equid 1689 . . . . . . . 8  |-  x  =  x
39 sbceq1a 3172 . . . . . . . 8  |-  ( x  =  x  ->  ( [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  [. x  /  x ]. [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
4038, 39ax-mp 8 . . . . . . 7  |-  ( [. B  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  [. x  /  x ]. [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
) )
4137, 40syl6ibr 220 . . . . . 6  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
) ) )
42 sbcoreleleq 28620 . . . . . . 7  |-  ( B  e.  A  ->  ( [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  B  \/  B  e.  x  \/  x  =  B ) ) )
4342biimpd 200 . . . . . 6  |-  ( B  e.  A  ->  ( [. B  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  ->  ( x  e.  B  \/  B  e.  x  \/  x  =  B ) ) )
4426, 41, 43sylsyld 55 . . . . 5  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  ( x  e.  B  \/  B  e.  x  \/  x  =  B
) ) )
45 3ornot23 28592 . . . . . 6  |-  ( ( -.  B  e.  x  /\  -.  x  =  B )  ->  ( (
x  e.  B  \/  B  e.  x  \/  x  =  B )  ->  x  e.  B ) )
4645ex 425 . . . . 5  |-  ( -.  B  e.  x  -> 
( -.  x  =  B  ->  ( (
x  e.  B  \/  B  e.  x  \/  x  =  B )  ->  x  e.  B ) ) )
4717, 25, 44, 46ee222 28585 . . . 4  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  ( (
x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
488, 47alrimi 1782 . . 3  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  A. y
( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
494, 48alrimi 1782 . 2  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  A. x A. y ( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
50 dftr2 4305 . 2  |-  ( Tr  B  <->  A. x A. y
( ( x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
5149, 50sylibr 205 1  |-  ( ( Tr  A  /\  A. x  e.  A  A. y  e.  A  (
x  e.  y  \/  y  e.  x  \/  x  =  y )  /\  B  e.  A
)  ->  Tr  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    \/ w3o 936    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2706   [.wsbc 3162   Tr wtr 4303
This theorem is referenced by:  ordelordALT  28623  ordelordALTVD  28980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404  ax-un 4702  ax-reg 7561
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-fr 4542
  Copyright terms: Public domain W3C validator