Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trdom Unicode version

Theorem trdom 25716
Description: Domain of a translation. (Contributed by FL, 17-Feb-2008.)
Hypothesis
Ref Expression
trdom.1  |-  F  =  ( x  e.  RR  |->  ( x  +  A
) )
Assertion
Ref Expression
trdom  |-  ( A  e.  RR  ->  dom  F  =  RR )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem trdom
StepHypRef Expression
1 readdcl 8836 . . . . 5  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  +  A
)  e.  RR )
2 elex 2809 . . . . 5  |-  ( ( x  +  A )  e.  RR  ->  (
x  +  A )  e.  _V )
31, 2syl 15 . . . 4  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  +  A
)  e.  _V )
43ancoms 439 . . 3  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  +  A
)  e.  _V )
54ralrimiva 2639 . 2  |-  ( A  e.  RR  ->  A. x  e.  RR  ( x  +  A )  e.  _V )
6 trdom.1 . . 3  |-  F  =  ( x  e.  RR  |->  ( x  +  A
) )
76cmpdom 25246 . 2  |-  ( A. x  e.  RR  (
x  +  A )  e.  _V  <->  dom  F  =  RR )
85, 7sylib 188 1  |-  ( A  e.  RR  ->  dom  F  =  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    e. cmpt 4093   dom cdm 4705  (class class class)co 5874   RRcr 8752    + caddc 8756
This theorem is referenced by:  trnij  25718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-addrcl 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-fun 5273  df-fn 5274
  Copyright terms: Public domain W3C validator