MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trel3 Structured version   Unicode version

Theorem trel3 4303
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.)
Assertion
Ref Expression
trel3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )

Proof of Theorem trel3
StepHypRef Expression
1 3anass 940 . . 3  |-  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  <->  ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) ) )
2 trel 4302 . . . 4  |-  ( Tr  A  ->  ( ( C  e.  D  /\  D  e.  A )  ->  C  e.  A ) )
32anim2d 549 . . 3  |-  ( Tr  A  ->  ( ( B  e.  C  /\  ( C  e.  D  /\  D  e.  A
) )  ->  ( B  e.  C  /\  C  e.  A )
) )
41, 3syl5bi 209 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  ( B  e.  C  /\  C  e.  A
) ) )
5 trel 4302 . 2  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  A )  ->  B  e.  A ) )
64, 5syld 42 1  |-  ( Tr  A  ->  ( ( B  e.  C  /\  C  e.  D  /\  D  e.  A )  ->  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   Tr wtr 4295
This theorem is referenced by:  ordelord  4596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2951  df-in 3320  df-ss 3327  df-uni 4009  df-tr 4296
  Copyright terms: Public domain W3C validator