MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil2 Unicode version

Theorem trfil2 17598
Description: Conditions for the trace of a filter  L to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil2  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  A. v  e.  L  ( v  i^i  A
)  =/=  (/) ) )
Distinct variable groups:    v, A    v, L    v, Y

Proof of Theorem trfil2
Dummy variables  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A  C_  Y )
2 dfss1 3386 . . . . 5  |-  ( A 
C_  Y  <->  ( Y  i^i  A )  =  A )
31, 2sylib 188 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( Y  i^i  A )  =  A )
4 simpl 443 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  L  e.  ( Fil `  Y
) )
5 id 19 . . . . . 6  |-  ( A 
C_  Y  ->  A  C_  Y )
6 filtop 17566 . . . . . 6  |-  ( L  e.  ( Fil `  Y
)  ->  Y  e.  L )
7 ssexg 4176 . . . . . 6  |-  ( ( A  C_  Y  /\  Y  e.  L )  ->  A  e.  _V )
85, 6, 7syl2anr 464 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A  e.  _V )
96adantr 451 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  Y  e.  L )
10 elrestr 13349 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V  /\  Y  e.  L )  ->  ( Y  i^i  A )  e.  ( Lt  A ) )
114, 8, 9, 10syl3anc 1182 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( Y  i^i  A )  e.  ( Lt  A ) )
123, 11eqeltrrd 2371 . . 3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A  e.  ( Lt  A ) )
13 elpwi 3646 . . . . 5  |-  ( x  e.  ~P A  ->  x  C_  A )
14 vex 2804 . . . . . . . . . 10  |-  u  e. 
_V
1514inex1 4171 . . . . . . . . 9  |-  ( u  i^i  A )  e. 
_V
1615a1i 10 . . . . . . . 8  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  u  e.  L )  ->  (
u  i^i  A )  e.  _V )
17 elrest 13348 . . . . . . . . . 10  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V )  ->  (
y  e.  ( Lt  A )  <->  E. u  e.  L  y  =  ( u  i^i  A ) ) )
188, 17syldan 456 . . . . . . . . 9  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
y  e.  ( Lt  A )  <->  E. u  e.  L  y  =  ( u  i^i  A ) ) )
1918adantr 451 . . . . . . . 8  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  C_  A
)  ->  ( y  e.  ( Lt  A )  <->  E. u  e.  L  y  =  ( u  i^i  A ) ) )
20 simpr 447 . . . . . . . . 9  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  y  =  ( u  i^i  A ) )  ->  y  =  ( u  i^i  A ) )
2120sseq1d 3218 . . . . . . . 8  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  y  =  ( u  i^i  A ) )  ->  ( y  C_  x  <->  ( u  i^i 
A )  C_  x
) )
2216, 19, 21rexxfr2d 4567 . . . . . . 7  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  C_  A
)  ->  ( E. y  e.  ( Lt  A
) y  C_  x  <->  E. u  e.  L  ( u  i^i  A ) 
C_  x ) )
23 indir 3430 . . . . . . . . . . 11  |-  ( ( u  u.  x )  i^i  A )  =  ( ( u  i^i 
A )  u.  (
x  i^i  A )
)
24 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  x  C_  A )
25 df-ss 3179 . . . . . . . . . . . . . 14  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
2624, 25sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( x  i^i  A
)  =  x )
2726uneq2d 3342 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( ( u  i^i 
A )  u.  (
x  i^i  A )
)  =  ( ( u  i^i  A )  u.  x ) )
28 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( u  i^i  A
)  C_  x )
29 ssequn1 3358 . . . . . . . . . . . . 13  |-  ( ( u  i^i  A ) 
C_  x  <->  ( (
u  i^i  A )  u.  x )  =  x )
3028, 29sylib 188 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( ( u  i^i 
A )  u.  x
)  =  x )
3127, 30eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( ( u  i^i 
A )  u.  (
x  i^i  A )
)  =  x )
3223, 31syl5eq 2340 . . . . . . . . . 10  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( ( u  u.  x )  i^i  A
)  =  x )
33 simplll 734 . . . . . . . . . . 11  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  L  e.  ( Fil `  Y ) )
34 simpllr 735 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  A  C_  Y )
3533, 34, 8syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  A  e.  _V )
36 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  u  e.  L )
37 filelss 17563 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ( Fil `  Y )  /\  u  e.  L )  ->  u  C_  Y )
3833, 36, 37syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  u  C_  Y )
3924, 34sstrd 3202 . . . . . . . . . . . . 13  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  x  C_  Y )
4038, 39unssd 3364 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( u  u.  x
)  C_  Y )
41 ssun1 3351 . . . . . . . . . . . . 13  |-  u  C_  ( u  u.  x
)
4241a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  u  C_  ( u  u.  x ) )
43 filss 17564 . . . . . . . . . . . 12  |-  ( ( L  e.  ( Fil `  Y )  /\  (
u  e.  L  /\  ( u  u.  x
)  C_  Y  /\  u  C_  ( u  u.  x ) ) )  ->  ( u  u.  x )  e.  L
)
4433, 36, 40, 42, 43syl13anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( u  u.  x
)  e.  L )
45 elrestr 13349 . . . . . . . . . . 11  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V  /\  ( u  u.  x )  e.  L )  ->  (
( u  u.  x
)  i^i  A )  e.  ( Lt  A ) )
4633, 35, 44, 45syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  -> 
( ( u  u.  x )  i^i  A
)  e.  ( Lt  A ) )
4732, 46eqeltrrd 2371 . . . . . . . . 9  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  ( u  e.  L  /\  (
u  i^i  A )  C_  x ) )  ->  x  e.  ( Lt  A
) )
4847expr 598 . . . . . . . 8  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  C_  A
)  /\  u  e.  L )  ->  (
( u  i^i  A
)  C_  x  ->  x  e.  ( Lt  A ) ) )
4948rexlimdva 2680 . . . . . . 7  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  C_  A
)  ->  ( E. u  e.  L  (
u  i^i  A )  C_  x  ->  x  e.  ( Lt  A ) ) )
5022, 49sylbid 206 . . . . . 6  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  C_  A
)  ->  ( E. y  e.  ( Lt  A
) y  C_  x  ->  x  e.  ( Lt  A ) ) )
5150ex 423 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
x  C_  A  ->  ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) ) ) )
5213, 51syl5 28 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
x  e.  ~P A  ->  ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) ) ) )
5352ralrimiv 2638 . . 3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) ) )
54 simpll 730 . . . . . 6  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  ( z  e.  L  /\  u  e.  L ) )  ->  L  e.  ( Fil `  Y ) )
558adantr 451 . . . . . 6  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  ( z  e.  L  /\  u  e.  L ) )  ->  A  e.  _V )
56 filin 17565 . . . . . . . 8  |-  ( ( L  e.  ( Fil `  Y )  /\  z  e.  L  /\  u  e.  L )  ->  (
z  i^i  u )  e.  L )
57563expb 1152 . . . . . . 7  |-  ( ( L  e.  ( Fil `  Y )  /\  (
z  e.  L  /\  u  e.  L )
)  ->  ( z  i^i  u )  e.  L
)
5857adantlr 695 . . . . . 6  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  ( z  e.  L  /\  u  e.  L ) )  -> 
( z  i^i  u
)  e.  L )
59 elrestr 13349 . . . . . 6  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V  /\  ( z  i^i  u )  e.  L )  ->  (
( z  i^i  u
)  i^i  A )  e.  ( Lt  A ) )
6054, 55, 58, 59syl3anc 1182 . . . . 5  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  ( z  e.  L  /\  u  e.  L ) )  -> 
( ( z  i^i  u )  i^i  A
)  e.  ( Lt  A ) )
6160ralrimivva 2648 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A. z  e.  L  A. u  e.  L  ( (
z  i^i  u )  i^i  A )  e.  ( Lt  A ) )
62 vex 2804 . . . . . . 7  |-  z  e. 
_V
6362inex1 4171 . . . . . 6  |-  ( z  i^i  A )  e. 
_V
6463a1i 10 . . . . 5  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  z  e.  L )  ->  (
z  i^i  A )  e.  _V )
65 elrest 13348 . . . . . 6  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V )  ->  (
x  e.  ( Lt  A )  <->  E. z  e.  L  x  =  ( z  i^i  A ) ) )
668, 65syldan 456 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
x  e.  ( Lt  A )  <->  E. z  e.  L  x  =  ( z  i^i  A ) ) )
6715a1i 10 . . . . . 6  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  u  e.  L )  ->  (
u  i^i  A )  e.  _V )
6818adantr 451 . . . . . 6  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  ->  (
y  e.  ( Lt  A )  <->  E. u  e.  L  y  =  ( u  i^i  A ) ) )
69 ineq12 3378 . . . . . . . . 9  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( u  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  A )  i^i  ( u  i^i 
A ) ) )
70 inindir 3400 . . . . . . . . 9  |-  ( ( z  i^i  u )  i^i  A )  =  ( ( z  i^i 
A )  i^i  (
u  i^i  A )
)
7169, 70syl6eqr 2346 . . . . . . . 8  |-  ( ( x  =  ( z  i^i  A )  /\  y  =  ( u  i^i  A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  u )  i^i  A ) )
7271adantll 694 . . . . . . 7  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  y  =  ( u  i^i 
A ) )  -> 
( x  i^i  y
)  =  ( ( z  i^i  u )  i^i  A ) )
7372eleq1d 2362 . . . . . 6  |-  ( ( ( ( L  e.  ( Fil `  Y
)  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  /\  y  =  ( u  i^i 
A ) )  -> 
( ( x  i^i  y )  e.  ( Lt  A )  <->  ( (
z  i^i  u )  i^i  A )  e.  ( Lt  A ) ) )
7467, 68, 73ralxfr2d 4566 . . . . 5  |-  ( ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y
)  /\  x  =  ( z  i^i  A
) )  ->  ( A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A )  <->  A. u  e.  L  ( (
z  i^i  u )  i^i  A )  e.  ( Lt  A ) ) )
7564, 66, 74ralxfr2d 4566 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A )  <->  A. z  e.  L  A. u  e.  L  ( (
z  i^i  u )  i^i  A )  e.  ( Lt  A ) ) )
7661, 75mpbird 223 . . 3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) )
77 isfil2 17567 . . . . . 6  |-  ( ( Lt  A )  e.  ( Fil `  A )  <-> 
( ( ( Lt  A )  C_  ~P A  /\  -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )
78 restsspw 13352 . . . . . . . 8  |-  ( Lt  A )  C_  ~P A
79 3anass 938 . . . . . . . 8  |-  ( ( ( Lt  A )  C_  ~P A  /\  -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  <->  ( ( Lt  A )  C_  ~P A  /\  ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) ) ) )
8078, 79mpbiran 884 . . . . . . 7  |-  ( ( ( Lt  A )  C_  ~P A  /\  -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  <->  ( -.  (/) 
e.  ( Lt  A )  /\  A  e.  ( Lt  A ) ) )
81803anbi1i 1142 . . . . . 6  |-  ( ( ( ( Lt  A ) 
C_  ~P A  /\  -.  (/) 
e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) )  <->  ( ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )
82 3anass 938 . . . . . 6  |-  ( ( ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) )  <->  ( ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) ) )
8377, 81, 823bitri 262 . . . . 5  |-  ( ( Lt  A )  e.  ( Fil `  A )  <-> 
( ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) ) )
84 anass 630 . . . . 5  |-  ( ( ( -.  (/)  e.  ( Lt  A )  /\  A  e.  ( Lt  A ) )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )  <-> 
( -.  (/)  e.  ( Lt  A )  /\  ( A  e.  ( Lt  A
)  /\  ( A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) ) ) )
85 ancom 437 . . . . 5  |-  ( ( -.  (/)  e.  ( Lt  A )  /\  ( A  e.  ( Lt  A )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A
) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) ) )  <->  ( ( A  e.  ( Lt  A )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A
) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )  /\  -.  (/)  e.  ( Lt  A ) ) )
8683, 84, 853bitri 262 . . . 4  |-  ( ( Lt  A )  e.  ( Fil `  A )  <-> 
( ( A  e.  ( Lt  A )  /\  ( A. x  e.  ~P  A ( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )  /\  -.  (/)  e.  ( Lt  A ) ) )
8786baib 871 . . 3  |-  ( ( A  e.  ( Lt  A )  /\  ( A. x  e.  ~P  A
( E. y  e.  ( Lt  A ) y  C_  x  ->  x  e.  ( Lt  A ) )  /\  A. x  e.  ( Lt  A ) A. y  e.  ( Lt  A ) ( x  i^i  y )  e.  ( Lt  A ) ) )  ->  ( ( Lt  A )  e.  ( Fil `  A )  <->  -.  (/)  e.  ( Lt  A ) ) )
8812, 53, 76, 87syl12anc 1180 . 2  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  (/)  e.  ( Lt  A ) ) )
89 necom 2540 . . . . 5  |-  ( ( v  i^i  A )  =/=  (/)  <->  (/)  =/=  ( v  i^i  A ) )
90 df-ne 2461 . . . . 5  |-  ( (/)  =/=  ( v  i^i  A
)  <->  -.  (/)  =  ( v  i^i  A ) )
9189, 90bitri 240 . . . 4  |-  ( ( v  i^i  A )  =/=  (/)  <->  -.  (/)  =  ( v  i^i  A ) )
9291ralbii 2580 . . 3  |-  ( A. v  e.  L  (
v  i^i  A )  =/=  (/)  <->  A. v  e.  L  -.  (/)  =  ( v  i^i  A ) )
93 elrest 13348 . . . . . 6  |-  ( ( L  e.  ( Fil `  Y )  /\  A  e.  _V )  ->  ( (/) 
e.  ( Lt  A )  <->  E. v  e.  L  (/)  =  ( v  i^i 
A ) ) )
948, 93syldan 456 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( (/) 
e.  ( Lt  A )  <->  E. v  e.  L  (/)  =  ( v  i^i 
A ) ) )
95 dfrex2 2569 . . . . 5  |-  ( E. v  e.  L  (/)  =  ( v  i^i 
A )  <->  -.  A. v  e.  L  -.  (/)  =  ( v  i^i  A ) )
9694, 95syl6bb 252 . . . 4  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( (/) 
e.  ( Lt  A )  <->  -.  A. v  e.  L  -.  (/)  =  ( v  i^i  A ) ) )
9796con2bid 319 . . 3  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( A. v  e.  L  -.  (/)  =  ( v  i^i  A )  <->  -.  (/)  e.  ( Lt  A ) ) )
9892, 97syl5bb 248 . 2  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  ( A. v  e.  L  ( v  i^i  A
)  =/=  (/)  <->  -.  (/)  e.  ( Lt  A ) ) )
9988, 98bitr4d 247 1  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  A. v  e.  L  ( v  i^i  A
)  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   ` cfv 5271  (class class class)co 5874   ↾t crest 13341   Filcfil 17556
This theorem is referenced by:  trfil3  17599  trnei  17603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-rest 13343  df-fbas 17536  df-fil 17557
  Copyright terms: Public domain W3C validator