Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin Structured version   Unicode version

Theorem trin 4304
 Description: The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
trin

Proof of Theorem trin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3522 . . . . 5
2 trss 4303 . . . . . 6
3 trss 4303 . . . . . 6
42, 3im2anan9 809 . . . . 5
51, 4syl5bi 209 . . . 4
6 ssin 3555 . . . 4
75, 6syl6ib 218 . . 3
87ralrimiv 2780 . 2
9 dftr3 4298 . 2
108, 9sylibr 204 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  wral 2697   cin 3311   wss 3312   wtr 4294 This theorem is referenced by:  ordin  4603  tcmin  7672  ingru  8682  gruina  8685  dfon2lem4  25405 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-in 3319  df-ss 3326  df-uni 4008  df-tr 4295
 Copyright terms: Public domain W3C validator