MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trin2 Unicode version

Theorem trin2 5066
Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )

Proof of Theorem trin2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 5055 . . . 4  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
2 cotr 5055 . . . . . 6  |-  ( ( S  o.  S ) 
C_  S  <->  A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S
z ) )
3 brin 4070 . . . . . . . . . . . . 13  |-  ( x ( R  i^i  S
) y  <->  ( x R y  /\  x S y ) )
4 brin 4070 . . . . . . . . . . . . 13  |-  ( y ( R  i^i  S
) z  <->  ( y R z  /\  y S z ) )
5 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
6 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x S y  /\  y S z )  ->  x S z ) )
75, 6anim12d 546 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  (
x R z  /\  x S z ) ) )
87com12 27 . . . . . . . . . . . . . 14  |-  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
98an4s 799 . . . . . . . . . . . . 13  |-  ( ( ( x R y  /\  x S y )  /\  ( y R z  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
103, 4, 9syl2anb 465 . . . . . . . . . . . 12  |-  ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  -> 
( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( x R z  /\  x S z ) ) )
1110com12 27 . . . . . . . . . . 11  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  -> 
( x R z  /\  x S z ) ) )
12 brin 4070 . . . . . . . . . . 11  |-  ( x ( R  i^i  S
) z  <->  ( x R z  /\  x S z ) )
1311, 12syl6ibr 218 . . . . . . . . . 10  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1413alanimi 1549 . . . . . . . . 9  |-  ( ( A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. z ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1514alanimi 1549 . . . . . . . 8  |-  ( ( A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  ->  A. y A. z ( ( x ( R  i^i  S ) y  /\  y ( R  i^i  S ) z )  ->  x ( R  i^i  S ) z ) )
1615alanimi 1549 . . . . . . 7  |-  ( ( A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1716ex 423 . . . . . 6  |-  ( A. x A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  -> 
( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
182, 17sylbi 187 . . . . 5  |-  ( ( S  o.  S ) 
C_  S  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
1918com12 27 . . . 4  |-  ( A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( S  o.  S )  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
201, 19sylbi 187 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( S  o.  S
)  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
2120imp 418 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
22 cotr 5055 . 2  |-  ( ( ( R  i^i  S
)  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S )  <->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
2321, 22sylibr 203 1  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527    i^i cin 3151    C_ wss 3152   class class class wbr 4023    o. ccom 4693
This theorem is referenced by:  trinxp  5068  int2pre  25237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-co 4698
  Copyright terms: Public domain W3C validator