MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trint0 Unicode version

Theorem trint0 4253
Description: Any non-empty transitive class includes its intersection. Exercise 2 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
trint0  |-  ( ( Tr  A  /\  A  =/=  (/) )  ->  |^| A  C_  A )

Proof of Theorem trint0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 n0 3573 . . 3  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
2 intss1 4000 . . . . 5  |-  ( x  e.  A  ->  |^| A  C_  x )
3 trss 4245 . . . . . 6  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
43com12 29 . . . . 5  |-  ( x  e.  A  ->  ( Tr  A  ->  x  C_  A ) )
5 sstr2 3291 . . . . 5  |-  ( |^| A  C_  x  ->  (
x  C_  A  ->  |^| A  C_  A )
)
62, 4, 5sylsyld 54 . . . 4  |-  ( x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A ) )
76exlimiv 1641 . . 3  |-  ( E. x  x  e.  A  ->  ( Tr  A  ->  |^| A  C_  A )
)
81, 7sylbi 188 . 2  |-  ( A  =/=  (/)  ->  ( Tr  A  ->  |^| A  C_  A
) )
98impcom 420 1  |-  ( ( Tr  A  /\  A  =/=  (/) )  ->  |^| A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    e. wcel 1717    =/= wne 2543    C_ wss 3256   (/)c0 3564   |^|cint 3985   Tr wtr 4236
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-v 2894  df-dif 3259  df-in 3263  df-ss 3270  df-nul 3565  df-uni 3951  df-int 3986  df-tr 4237
  Copyright terms: Public domain W3C validator