Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALT Unicode version

Theorem trintALT 28706
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 28706 is an alternative proof of trint 4281. trintALT 28706 is trintALTVD 28705 without virtual deductions and was automatically derived from trintALTVD 28705 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALT  |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
Distinct variable group:    x, A

Proof of Theorem trintALT
Dummy variables  q 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( z  e.  y  /\  y  e.  |^| A )  ->  z  e.  y )
21a1i 11 . . . 4  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
z  e.  y ) )
3 iidn3 28298 . . . . . . 7  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
( q  e.  A  ->  q  e.  A ) ) )
4 id 20 . . . . . . . 8  |-  ( A. x  e.  A  Tr  x  ->  A. x  e.  A  Tr  x )
5 rspsbc 3203 . . . . . . . 8  |-  ( q  e.  A  ->  ( A. x  e.  A  Tr  x  ->  [. q  /  x ]. Tr  x
) )
63, 4, 5ee31 28577 . . . . . . 7  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
( q  e.  A  ->  [. q  /  x ]. Tr  x ) ) )
7 trsbc 28340 . . . . . . . 8  |-  ( q  e.  A  ->  ( [. q  /  x ]. Tr  x  <->  Tr  q
) )
87biimpd 199 . . . . . . 7  |-  ( q  e.  A  ->  ( [. q  /  x ]. Tr  x  ->  Tr  q ) )
93, 6, 8ee33 28320 . . . . . 6  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
( q  e.  A  ->  Tr  q ) ) )
10 simpr 448 . . . . . . . . 9  |-  ( ( z  e.  y  /\  y  e.  |^| A )  ->  y  e.  |^| A )
1110a1i 11 . . . . . . . 8  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
y  e.  |^| A
) )
12 elintg 4022 . . . . . . . . 9  |-  ( y  e.  |^| A  ->  (
y  e.  |^| A  <->  A. q  e.  A  y  e.  q ) )
1312ibi 233 . . . . . . . 8  |-  ( y  e.  |^| A  ->  A. q  e.  A  y  e.  q )
1411, 13syl6 31 . . . . . . 7  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  ->  A. q  e.  A  y  e.  q )
)
15 rsp 2730 . . . . . . 7  |-  ( A. q  e.  A  y  e.  q  ->  ( q  e.  A  ->  y  e.  q ) )
1614, 15syl6 31 . . . . . 6  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
( q  e.  A  ->  y  e.  q ) ) )
17 trel 4273 . . . . . . 7  |-  ( Tr  q  ->  ( (
z  e.  y  /\  y  e.  q )  ->  z  e.  q ) )
1817exp3a 426 . . . . . 6  |-  ( Tr  q  ->  ( z  e.  y  ->  ( y  e.  q  ->  z  e.  q ) ) )
199, 2, 16, 18ee323 28305 . . . . 5  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
( q  e.  A  ->  z  e.  q ) ) )
2019ralrimdv 2759 . . . 4  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  ->  A. q  e.  A  z  e.  q )
)
21 elintg 4022 . . . . 5  |-  ( z  e.  y  ->  (
z  e.  |^| A  <->  A. q  e.  A  z  e.  q ) )
2221biimprd 215 . . . 4  |-  ( z  e.  y  ->  ( A. q  e.  A  z  e.  q  ->  z  e.  |^| A ) )
232, 20, 22ee22 1368 . . 3  |-  ( A. x  e.  A  Tr  x  ->  ( ( z  e.  y  /\  y  e.  |^| A )  -> 
z  e.  |^| A
) )
2423alrimivv 1639 . 2  |-  ( A. x  e.  A  Tr  x  ->  A. z A. y
( ( z  e.  y  /\  y  e. 
|^| A )  -> 
z  e.  |^| A
) )
25 dftr2 4268 . 2  |-  ( Tr 
|^| A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  |^| A )  -> 
z  e.  |^| A
) )
2624, 25sylibr 204 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wal 1546    e. wcel 1721   A.wral 2670   [.wsbc 3125   |^|cint 4014   Tr wtr 4266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-v 2922  df-sbc 3126  df-in 3291  df-ss 3298  df-uni 3980  df-int 4015  df-tr 4267
  Copyright terms: Public domain W3C validator