MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trinxp Unicode version

Theorem trinxp 5068
Description: The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square cross product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trinxp  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem trinxp
StepHypRef Expression
1 xpidtr 5065 . 2  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
2 trin2 5066 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( ( A  X.  A )  o.  ( A  X.  A ) ) 
C_  ( A  X.  A ) )  -> 
( ( R  i^i  ( A  X.  A
) )  o.  ( R  i^i  ( A  X.  A ) ) ) 
C_  ( R  i^i  ( A  X.  A
) ) )
31, 2mpan2 652 1  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3151    C_ wss 3152    X. cxp 4687    o. ccom 4693
This theorem is referenced by:  psss  14323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-co 4698
  Copyright terms: Public domain W3C validator