MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trinxp Unicode version

Theorem trinxp 5200
Description: The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square cross product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trinxp  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )

Proof of Theorem trinxp
StepHypRef Expression
1 xpidtr 5197 . 2  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
2 trin2 5198 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( ( A  X.  A )  o.  ( A  X.  A ) ) 
C_  ( A  X.  A ) )  -> 
( ( R  i^i  ( A  X.  A
) )  o.  ( R  i^i  ( A  X.  A ) ) ) 
C_  ( R  i^i  ( A  X.  A
) ) )
31, 2mpan2 653 1  |-  ( ( R  o.  R ) 
C_  R  ->  (
( R  i^i  ( A  X.  A ) )  o.  ( R  i^i  ( A  X.  A
) ) )  C_  ( R  i^i  ( A  X.  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3263    C_ wss 3264    X. cxp 4817    o. ccom 4823
This theorem is referenced by:  psss  14574
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-xp 4825  df-rel 4826  df-co 4828
  Copyright terms: Public domain W3C validator