Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcl Structured version   Unicode version

Theorem trlcl 30898
Description: Closure of the trace of a lattice translation. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
trlcl.b  |-  B  =  ( Base `  K
)
trlcl.h  |-  H  =  ( LHyp `  K
)
trlcl.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcl.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)

Proof of Theorem trlcl
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2435 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
3 eqid 2435 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 trlcl.h . . . . 5  |-  H  =  ( LHyp `  K
)
51, 2, 3, 4lhpocnel 30752 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )
65adantr 452 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )  e.  ( Atoms `  K )  /\  -.  ( ( oc
`  K ) `  W ) ( le
`  K ) W ) )
7 eqid 2435 . . . 4  |-  ( join `  K )  =  (
join `  K )
8 eqid 2435 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
9 trlcl.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlcl.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
111, 7, 8, 3, 4, 9, 10trlval2 30897 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( oc
`  K ) `  W )  e.  (
Atoms `  K )  /\  -.  ( ( oc `  K ) `  W
) ( le `  K ) W ) )  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
126, 11mpd3an3 1280 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  ( ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W ) )
13 hllat 30098 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
1413ad2antrr 707 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  Lat )
15 hlop 30097 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
1615ad2antrr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  K  e.  OP )
17 trlcl.b . . . . . . 7  |-  B  =  ( Base `  K
)
1817, 4lhpbase 30732 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
1918ad2antlr 708 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  W  e.  B )
2017, 2opoccl 29929 . . . . 5  |-  ( ( K  e.  OP  /\  W  e.  B )  ->  ( ( oc `  K ) `  W
)  e.  B )
2116, 19, 20syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( oc `  K ) `  W )  e.  B
)
2217, 4, 9ltrncl 30859 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( oc `  K ) `  W
)  e.  B )  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2321, 22mpd3an3 1280 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F `  ( ( oc `  K ) `  W
) )  e.  B
)
2417, 7latjcl 14471 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  W
)  e.  B  /\  ( F `  ( ( oc `  K ) `
 W ) )  e.  B )  -> 
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B )
2514, 21, 23, 24syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( oc `  K
) `  W )
( join `  K )
( F `  (
( oc `  K
) `  W )
) )  e.  B
)
2617, 8latmcl 14472 . . 3  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) )  e.  B  /\  W  e.  B )  ->  (
( ( ( oc
`  K ) `  W ) ( join `  K ) ( F `
 ( ( oc
`  K ) `  W ) ) ) ( meet `  K
) W )  e.  B )
2714, 25, 19, 26syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
( ( oc `  K ) `  W
) ( join `  K
) ( F `  ( ( oc `  K ) `  W
) ) ) (
meet `  K ) W )  e.  B
)
2812, 27eqeltrd 2509 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   occoc 13529   joincjn 14393   meetcmee 14394   Latclat 14466   OPcops 29907   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   trLctrl 30892
This theorem is referenced by:  trljat1  30900  trljat2  30901  trlval3  30921  cdlemc3  30927  cdlemc5  30929  trlord  31303  cdlemg4c  31346  cdlemg4  31351  cdlemg6c  31354  cdlemg10c  31373  cdlemg10  31375  cdlemg12e  31381  cdlemg17dALTN  31398  cdlemg31a  31431  cdlemg31b  31432  cdlemg35  31447  cdlemg44a  31465  trljco  31474  trljco2  31475  tendoidcl  31503  tendococl  31506  tendoid  31507  tendopltp  31514  tendo0tp  31523  cdlemh1  31549  cdlemh2  31550  cdlemi1  31552  cdlemi  31554  cdlemk9  31573  cdlemk9bN  31574  cdlemkvcl  31576  cdlemk10  31577  cdlemk11  31583  cdlemk11u  31605  cdlemk37  31648  cdlemkfid1N  31655  cdlemkid1  31656  cdlemkid2  31658  cdlemk39s-id  31674  cdlemk48  31684  cdlemk50  31686  cdlemk51  31687  cdlemk52  31688  cdlemk39u  31702  tendoex  31709  dialss  31781  dia0  31787  diaglbN  31790  dia1dim  31796  dia2dimlem2  31800  dia2dimlem3  31801  dia2dimlem10  31808  cdlemm10N  31853  dib1dim  31900  diblss  31905  cdlemn2a  31931  dih1dimb  31975  dihopelvalcpre  31983  dih1  32021  dihmeetlem1N  32025  dihglblem5apreN  32026  dihglbcpreN  32035  dih1dimatlem  32064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator