Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcnv Unicode version

Theorem trlcnv 30406
Description: The trace of the converse of a lattice translation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
trlcnv.h  |-  H  =  ( LHyp `  K
)
trlcnv.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcnv.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcnv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )

Proof of Theorem trlcnv
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 eqid 2358 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2358 . . . 4  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 trlcnv.h . . . 4  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexnle 30247 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  (
Atoms `  K )  -.  p ( le `  K ) W )
54adantr 451 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  ( Atoms `  K )  -.  p ( le `  K ) W )
6 eqid 2358 . . . . . . . . . . . 12  |-  ( Base `  K )  =  (
Base `  K )
7 trlcnv.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
86, 3, 7ltrn1o 30365 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
983adant3 975 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
10 simp3l 983 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  p  e.  ( Atoms `  K )
)
116, 2atbase 29531 . . . . . . . . . . 11  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  ( Base `  K )
)
1210, 11syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  p  e.  ( Base `  K )
)
13 f1ocnvfv1 5876 . . . . . . . . . 10  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  p  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  p ) )  =  p )
149, 12, 13syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( `' F `  ( F `  p ) )  =  p )
1514oveq2d 5958 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
( `' F `  ( F `  p ) ) )  =  ( ( F `  p
) ( join `  K
) p ) )
16 simp1l 979 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  K  e.  HL )
171, 2, 3, 7ltrnat 30381 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  p  e.  ( Atoms `  K ) )  ->  ( F `  p )  e.  (
Atoms `  K ) )
18173adant3r 1179 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( F `  p )  e.  (
Atoms `  K ) )
19 eqid 2358 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
2019, 2hlatjcom 29609 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( F `  p )  e.  ( Atoms `  K
)  /\  p  e.  ( Atoms `  K )
)  ->  ( ( F `  p )
( join `  K )
p )  =  ( p ( join `  K
) ( F `  p ) ) )
2116, 18, 10, 20syl3anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
p )  =  ( p ( join `  K
) ( F `  p ) ) )
2215, 21eqtrd 2390 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )
( join `  K )
( `' F `  ( F `  p ) ) )  =  ( p ( join `  K
) ( F `  p ) ) )
2322oveq1d 5957 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( (
( F `  p
) ( join `  K
) ( `' F `  ( F `  p
) ) ) (
meet `  K ) W )  =  ( ( p ( join `  K ) ( F `
 p ) ) ( meet `  K
) W ) )
24 simp1 955 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
253, 7ltrncnv 30387 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
26253adant3 975 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  `' F  e.  T )
271, 2, 3, 7ltrnel 30380 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  e.  ( Atoms `  K )  /\  -.  ( F `  p ) ( le
`  K ) W ) )
28 eqid 2358 . . . . . . . 8  |-  ( meet `  K )  =  (
meet `  K )
29 trlcnv.r . . . . . . . 8  |-  R  =  ( ( trL `  K
) `  W )
301, 19, 28, 2, 3, 7, 29trlval2 30404 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T  /\  ( ( F `  p )  e.  ( Atoms `  K
)  /\  -.  ( F `  p )
( le `  K
) W ) )  ->  ( R `  `' F )  =  ( ( ( F `  p ) ( join `  K ) ( `' F `  ( F `
 p ) ) ) ( meet `  K
) W ) )
3124, 26, 27, 30syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( ( ( F `  p ) ( join `  K ) ( `' F `  ( F `
 p ) ) ) ( meet `  K
) W ) )
321, 19, 28, 2, 3, 7, 29trlval2 30404 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  F )  =  ( ( p ( join `  K ) ( F `
 p ) ) ( meet `  K
) W ) )
3323, 31, 323eqtr4d 2400 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  (
Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( R `  F ) )
34333expa 1151 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  ( Atoms `  K )  /\  -.  p ( le `  K ) W ) )  ->  ( R `  `' F )  =  ( R `  F ) )
3534exp32 588 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( p  e.  ( Atoms `  K )  ->  ( -.  p ( le `  K ) W  ->  ( R `  `' F )  =  ( R `  F ) ) ) )
3635rexlimdv 2742 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. p  e.  ( Atoms `  K )  -.  p
( le `  K
) W  ->  ( R `  `' F
)  =  ( R `
 F ) ) )
375, 36mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   E.wrex 2620   class class class wbr 4102   `'ccnv 4767   -1-1-onto->wf1o 5333   ` cfv 5334  (class class class)co 5942   Basecbs 13239   lecple 13306   joincjn 14171   meetcmee 14172   Atomscatm 29505   HLchlt 29592   LHypclh 30225   LTrncltrn 30342   trLctrl 30399
This theorem is referenced by:  trlcocnv  30961  trlcoat  30964  trlcocnvat  30965  trlcone  30969  cdlemg46  30976  tendoicl  31037  cdlemh1  31056  cdlemh2  31057  cdlemh  31058  cdlemk3  31074  cdlemk12  31091  cdlemk12u  31113  cdlemkfid1N  31162  cdlemkid1  31163  cdlemkid2  31165  cdlemk45  31188
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-map 6859  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400
  Copyright terms: Public domain W3C validator