Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Structured version   Unicode version

Theorem trlcoabs2N 31420
 Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l
trlcoabs.j
trlcoabs.a
trlcoabs.h
trlcoabs.t
trlcoabs.r
Assertion
Ref Expression
trlcoabs2N

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 957 . . . 4
2 simp2r 984 . . . . 5
3 simp2l 983 . . . . . 6
4 trlcoabs.h . . . . . . 7
5 trlcoabs.t . . . . . . 7
64, 5ltrncnv 30844 . . . . . 6
71, 3, 6syl2anc 643 . . . . 5
84, 5ltrnco 31417 . . . . 5
91, 2, 7, 8syl3anc 1184 . . . 4
10 trlcoabs.l . . . . . 6
11 trlcoabs.a . . . . . 6
1210, 11, 4, 5ltrnel 30837 . . . . 5
13123adant2r 1179 . . . 4
14 trlcoabs.j . . . . 5
15 eqid 2435 . . . . 5
16 trlcoabs.r . . . . 5
1710, 14, 15, 11, 4, 5, 16trlval2 30861 . . . 4
181, 9, 13, 17syl3anc 1184 . . 3
1918oveq2d 6089 . 2
20 simp1l 981 . . 3
21 simp3l 985 . . . 4
2210, 11, 4, 5ltrnat 30838 . . . 4
231, 3, 21, 22syl3anc 1184 . . 3
2410, 11, 4, 5ltrnat 30838 . . . . 5
251, 9, 23, 24syl3anc 1184 . . . 4
26 eqid 2435 . . . . 5
2726, 14, 11hlatjcl 30065 . . . 4
2820, 23, 25, 27syl3anc 1184 . . 3
29 simp1r 982 . . . 4
3026, 4lhpbase 30696 . . . 4
3129, 30syl 16 . . 3
3210, 14, 11hlatlej1 30073 . . . 4
3320, 23, 25, 32syl3anc 1184 . . 3
3426, 10, 14, 15, 11atmod3i1 30562 . . 3
3520, 23, 28, 31, 33, 34syl131anc 1197 . 2
3610, 11, 4, 5ltrncoval 30843 . . . . . . 7
371, 9, 3, 21, 36syl121anc 1189 . . . . . 6
38 coass 5380 . . . . . . . 8
3926, 4, 5ltrn1o 30822 . . . . . . . . . . . 12
401, 3, 39syl2anc 643 . . . . . . . . . . 11
41 f1ococnv1 5696 . . . . . . . . . . 11
4240, 41syl 16 . . . . . . . . . 10
4342coeq2d 5027 . . . . . . . . 9
4426, 4, 5ltrn1o 30822 . . . . . . . . . . 11
451, 2, 44syl2anc 643 . . . . . . . . . 10
46 f1of 5666 . . . . . . . . . 10
47 fcoi1 5609 . . . . . . . . . 10
4845, 46, 473syl 19 . . . . . . . . 9
4943, 48eqtrd 2467 . . . . . . . 8
5038, 49syl5eq 2479 . . . . . . 7
5150fveq1d 5722 . . . . . 6
5237, 51eqtr3d 2469 . . . . 5
5352oveq2d 6089 . . . 4
54 eqid 2435 . . . . . 6
5510, 14, 54, 11, 4lhpjat2 30719 . . . . 5
561, 13, 55syl2anc 643 . . . 4
5753, 56oveq12d 6091 . . 3
58 hlol 30060 . . . . 5
5920, 58syl 16 . . . 4
6010, 11, 4, 5ltrnat 30838 . . . . . 6
611, 2, 21, 60syl3anc 1184 . . . . 5
6226, 14, 11hlatjcl 30065 . . . . 5
6320, 23, 61, 62syl3anc 1184 . . . 4
6426, 15, 54olm11 29926 . . . 4
6559, 63, 64syl2anc 643 . . 3
6657, 65eqtrd 2467 . 2
6719, 35, 663eqtrd 2471 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725   class class class wbr 4204   cid 4485  ccnv 4869   cres 4872   ccom 4874  wf 5442  wf1o 5445  cfv 5446  (class class class)co 6073  cbs 13459  cple 13526  cjn 14391  cmee 14392  cp1 14457  col 29873  catm 29962  chlt 30049  clh 30682  cltrn 30799  ctrl 30856 This theorem is referenced by:  cdlemkfid1N  31619 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-llines 30196  df-lplanes 30197  df-lvols 30198  df-lines 30199  df-psubsp 30201  df-pmap 30202  df-padd 30494  df-lhyp 30686  df-laut 30687  df-ldil 30802  df-ltrn 30803  df-trl 30857
 Copyright terms: Public domain W3C validator