Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Unicode version

Theorem trlcoabs2N 30911
Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l  |-  .<_  =  ( le `  K )
trlcoabs.j  |-  .\/  =  ( join `  K )
trlcoabs.a  |-  A  =  ( Atoms `  K )
trlcoabs.h  |-  H  =  ( LHyp `  K
)
trlcoabs.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcoabs.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcoabs2N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
3 simp2l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 trlcoabs.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
5 trlcoabs.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrncnv 30335 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
71, 3, 6syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
84, 5ltrnco 30908 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
91, 2, 7, 8syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  `' F )  e.  T
)
10 trlcoabs.l . . . . . 6  |-  .<_  =  ( le `  K )
11 trlcoabs.a . . . . . 6  |-  A  =  ( Atoms `  K )
1210, 11, 4, 5ltrnel 30328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
13123adant2r 1177 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
14 trlcoabs.j . . . . 5  |-  .\/  =  ( join `  K )
15 eqid 2283 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
16 trlcoabs.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1710, 14, 15, 11, 4, 5, 16trlval2 30352 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  ->  ( R `  ( G  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )
181, 9, 13, 17syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( G  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )
1918oveq2d 5874 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  (
( ( F `  P )  .\/  (
( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) ) )
20 simp1l 979 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
21 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
2210, 11, 4, 5ltrnat 30329 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
231, 3, 21, 22syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
2410, 11, 4, 5ltrnat 30329 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T  /\  ( F `  P
)  e.  A )  ->  ( ( G  o.  `' F ) `
 ( F `  P ) )  e.  A )
251, 9, 23, 24syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
) `  ( F `  P ) )  e.  A )
26 eqid 2283 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2726, 14, 11hlatjcl 29556 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  (
( G  o.  `' F ) `  ( F `  P )
)  e.  A )  ->  ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )
)
2820, 23, 25, 27syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )
)
29 simp1r 980 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
3026, 4lhpbase 30187 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3129, 30syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
3210, 14, 11hlatlej1 29564 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  (
( G  o.  `' F ) `  ( F `  P )
)  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )
3320, 23, 25, 32syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )
3426, 10, 14, 15, 11atmod3i1 30053 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( ( F `  P )  .\/  (
( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) )  /\  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )  ->  ( ( F `  P )  .\/  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )  =  ( ( ( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) ) )
3520, 23, 28, 31, 33, 34syl131anc 1195 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )  =  ( ( ( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) ) )
3610, 11, 4, 5ltrncoval 30334 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G  o.  `' F )  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  (
( ( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
371, 9, 3, 21, 36syl121anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
38 coass 5191 . . . . . . . 8  |-  ( ( G  o.  `' F
)  o.  F )  =  ( G  o.  ( `' F  o.  F
) )
3926, 4, 5ltrn1o 30313 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
401, 3, 39syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
41 f1ococnv1 5502 . . . . . . . . . . 11  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
4240, 41syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
4342coeq2d 4846 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  ( G  o.  (  _I  |`  ( Base `  K
) ) ) )
4426, 4, 5ltrn1o 30313 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
451, 2, 44syl2anc 642 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
46 f1of 5472 . . . . . . . . . 10  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
47 fcoi1 5415 . . . . . . . . . 10  |-  ( G : ( Base `  K
) --> ( Base `  K
)  ->  ( G  o.  (  _I  |`  ( Base `  K ) ) )  =  G )
4845, 46, 473syl 18 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  (  _I  |`  ( Base `  K ) ) )  =  G )
4943, 48eqtrd 2315 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  G )
5038, 49syl5eq 2327 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
)  o.  F )  =  G )
5150fveq1d 5527 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( G `  P ) )
5237, 51eqtr3d 2317 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
) `  ( F `  P ) )  =  ( G `  P
) )
5352oveq2d 5874 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
54 eqid 2283 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
5510, 14, 54, 11, 4lhpjat2 30210 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  .\/  W
)  =  ( 1.
`  K ) )
561, 13, 55syl2anc 642 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  W )  =  ( 1. `  K ) )
5753, 56oveq12d 5876 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) )  =  ( ( ( F `  P )  .\/  ( G `  P )
) ( meet `  K
) ( 1. `  K ) ) )
58 hlol 29551 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
5920, 58syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
6010, 11, 4, 5ltrnat 30329 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
611, 2, 21, 60syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G `  P )  e.  A
)
6226, 14, 11hlatjcl 29556 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( G `  P )  e.  A )  ->  (
( F `  P
)  .\/  ( G `  P ) )  e.  ( Base `  K
) )
6320, 23, 61, 62syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( G `  P
) )  e.  (
Base `  K )
)
6426, 15, 54olm11 29417 . . . 4  |-  ( ( K  e.  OL  /\  ( ( F `  P )  .\/  ( G `  P )
)  e.  ( Base `  K ) )  -> 
( ( ( F `
 P )  .\/  ( G `  P ) ) ( meet `  K
) ( 1. `  K ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )
6559, 63, 64syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( G `  P ) ) (
meet `  K )
( 1. `  K
) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
6657, 65eqtrd 2315 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
6719, 35, 663eqtrd 2319 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023    _I cid 4304   `'ccnv 4688    |` cres 4691    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   1.cp1 14144   OLcol 29364   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemkfid1N  31110
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator