Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Unicode version

Theorem trlcoat 30964
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a  |-  A  =  ( Atoms `  K )
trlcoat.h  |-  H  =  ( LHyp `  K
)
trlcoat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcoat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcoat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  ( F  o.  G ) )  e.  A )

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
2 trlcoat.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
31, 2ltrnco 30960 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
433expb 1152 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( F  o.  G
)  e.  T )
5 eqid 2358 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 eqid 2358 . . . . . . 7  |-  ( 0.
`  K )  =  ( 0. `  K
)
7 trlcoat.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
85, 6, 1, 2, 7trlid0b 30419 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T
)  ->  ( ( F  o.  G )  =  (  _I  |`  ( Base `  K ) )  <-> 
( R `  ( F  o.  G )
)  =  ( 0.
`  K ) ) )
94, 8syldan 456 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F  o.  G )  =  (  _I  |`  ( Base `  K ) )  <->  ( R `  ( F  o.  G
) )  =  ( 0. `  K ) ) )
10 coass 5270 . . . . . . . . . 10  |-  ( ( `' F  o.  F
)  o.  G )  =  ( `' F  o.  ( F  o.  G
) )
11 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  F  e.  T
)
135, 1, 2ltrn1o 30365 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
1411, 12, 13syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  F : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
15 f1ococnv1 5582 . . . . . . . . . . . 12  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
1614, 15syl 15 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
1716coeq1d 4924 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( ( `' F  o.  F )  o.  G )  =  ( (  _I  |`  ( Base `  K ) )  o.  G ) )
18 coeq2 4921 . . . . . . . . . . 11  |-  ( ( F  o.  G )  =  (  _I  |`  ( Base `  K ) )  ->  ( `' F  o.  ( F  o.  G
) )  =  ( `' F  o.  (  _I  |`  ( Base `  K
) ) ) )
1918adantl 452 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( `' F  o.  ( F  o.  G
) )  =  ( `' F  o.  (  _I  |`  ( Base `  K
) ) ) )
2010, 17, 193eqtr3a 2414 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( (  _I  |`  ( Base `  K
) )  o.  G
)  =  ( `' F  o.  (  _I  |`  ( Base `  K
) ) ) )
21 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  G  e.  T
)
225, 1, 2ltrn1o 30365 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
2311, 21, 22syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  G : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
24 f1of 5552 . . . . . . . . . 10  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
25 fcoi2 5496 . . . . . . . . . 10  |-  ( G : ( Base `  K
) --> ( Base `  K
)  ->  ( (  _I  |`  ( Base `  K
) )  o.  G
)  =  G )
2623, 24, 253syl 18 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( (  _I  |`  ( Base `  K
) )  o.  G
)  =  G )
271, 2ltrncnv 30387 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
2811, 12, 27syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  `' F  e.  T )
295, 1, 2ltrn1o 30365 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' F  e.  T )  ->  `' F : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
3011, 28, 29syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  `' F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
31 f1of 5552 . . . . . . . . . 10  |-  ( `' F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  ->  `' F : ( Base `  K
) --> ( Base `  K
) )
32 fcoi1 5495 . . . . . . . . . 10  |-  ( `' F : ( Base `  K ) --> ( Base `  K )  ->  ( `' F  o.  (  _I  |`  ( Base `  K
) ) )  =  `' F )
3330, 31, 323syl 18 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( `' F  o.  (  _I  |`  ( Base `  K ) ) )  =  `' F
)
3420, 26, 333eqtr3d 2398 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  G  =  `' F )
3534fveq2d 5609 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  G )  =  ( R `  `' F
) )
361, 2, 7trlcnv 30406 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
3711, 12, 36syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
3835, 37eqtr2d 2391 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  G )  =  (  _I  |`  ( Base `  K ) ) )  ->  ( R `  F )  =  ( R `  G ) )
3938ex 423 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F  o.  G )  =  (  _I  |`  ( Base `  K ) )  -> 
( R `  F
)  =  ( R `
 G ) ) )
409, 39sylbird 226 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  ( F  o.  G
) )  =  ( 0. `  K )  ->  ( R `  F )  =  ( R `  G ) ) )
4140necon3d 2559 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  F )  =/=  ( R `  G )  ->  ( R `  ( F  o.  G )
)  =/=  ( 0.
`  K ) ) )
42 trlcoat.a . . . . 5  |-  A  =  ( Atoms `  K )
436, 42, 1, 2, 7trlatn0 30413 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T
)  ->  ( ( R `  ( F  o.  G ) )  e.  A  <->  ( R `  ( F  o.  G
) )  =/=  ( 0. `  K ) ) )
444, 43syldan 456 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  ( F  o.  G
) )  e.  A  <->  ( R `  ( F  o.  G ) )  =/=  ( 0. `  K ) ) )
4541, 44sylibrd 225 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( R `  F )  =/=  ( R `  G )  ->  ( R `  ( F  o.  G )
)  e.  A ) )
46453impia 1148 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( R `  F )  =/=  ( R `  G
) )  ->  ( R `  ( F  o.  G ) )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521    _I cid 4383   `'ccnv 4767    |` cres 4770    o. ccom 4772   -->wf 5330   -1-1-onto->wf1o 5333   ` cfv 5334   Basecbs 13239   0.cp0 14236   Atomscatm 29505   HLchlt 29592   LHypclh 30225   LTrncltrn 30342   trLctrl 30399
This theorem is referenced by:  trlcocnvat  30965  trlconid  30966  trljco  30981  cdlemh2  31057  cdlemh  31058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-map 6859  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-p1 14239  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740  df-lvols 29741  df-lines 29742  df-psubsp 29744  df-pmap 29745  df-padd 30037  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400
  Copyright terms: Public domain W3C validator