Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trljco2 Unicode version

Theorem trljco2 30930
Description: Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.)
Hypotheses
Ref Expression
trljco.j  |-  .\/  =  ( join `  K )
trljco.h  |-  H  =  ( LHyp `  K
)
trljco.t  |-  T  =  ( ( LTrn `  K
) `  W )
trljco.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trljco2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  G
)  .\/  ( R `  ( F  o.  G
) ) ) )

Proof of Theorem trljco2
StepHypRef Expression
1 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  K  e.  HL )
2 hllat 29553 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  K  e.  Lat )
4 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
5 trljco.h . . . . . 6  |-  H  =  ( LHyp `  K
)
6 trljco.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
7 trljco.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
84, 5, 6, 7trlcl 30353 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
983adant3 975 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
104, 5, 6, 7trlcl 30353 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
11103adant2 974 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
12 trljco.j . . . . 5  |-  .\/  =  ( join `  K )
134, 12latjcom 14165 . . . 4  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  =  ( ( R `  G
)  .\/  ( R `  F ) ) )
143, 9, 11, 13syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  =  ( ( R `  G
)  .\/  ( R `  F ) ) )
1512, 5, 6, 7trljco 30929 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( ( R `  G )  .\/  ( R `  ( G  o.  F )
) )  =  ( ( R `  G
)  .\/  ( R `  F ) ) )
16153com23 1157 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  G )  .\/  ( R `  ( G  o.  F )
) )  =  ( ( R `  G
)  .\/  ( R `  F ) ) )
1714, 16eqtr4d 2318 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  =  ( ( R `  G
)  .\/  ( R `  ( G  o.  F
) ) ) )
1812, 5, 6, 7trljco 30929 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  F
)  .\/  ( R `  G ) ) )
195, 6ltrncom 30927 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  =  ( G  o.  F ) )
2019fveq2d 5529 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( R `  ( F  o.  G
) )  =  ( R `  ( G  o.  F ) ) )
2120oveq2d 5874 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  G )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  G
)  .\/  ( R `  ( G  o.  F
) ) ) )
2217, 18, 213eqtr4d 2325 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( R `  F )  .\/  ( R `  ( F  o.  G )
) )  =  ( ( R `  G
)  .\/  ( R `  ( F  o.  G
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    o. ccom 4693   ` cfv 5255  (class class class)co 5858   Basecbs 13148   joincjn 14078   Latclat 14151   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemh1  31004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator