Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnid Structured version   Unicode version

Theorem trlnid 30976
Description: Different translations with the same trace cannot be the identity. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
trlnid.b  |-  B  =  ( Base `  K
)
trlnid.h  |-  H  =  ( LHyp `  K
)
trlnid.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlnid.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnid  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  =/=  (  _I  |`  B ) )

Proof of Theorem trlnid
StepHypRef Expression
1 simp3l 985 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  =/=  G
)
2 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  e.  T
)
4 trlnid.b . . . . . 6  |-  B  =  ( Base `  K
)
5 eqid 2436 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 trlnid.h . . . . . 6  |-  H  =  ( LHyp `  K
)
7 trlnid.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
8 trlnid.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
94, 5, 6, 7, 8trlid0b 30975 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =  (  _I  |`  B )  <-> 
( R `  F
)  =  ( 0.
`  K ) ) )
102, 3, 9syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( F  =  (  _I  |`  B )  <-> 
( R `  F
)  =  ( 0.
`  K ) ) )
1110biimpar 472 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  F  =  (  _I  |`  B ) )
12 simp3r 986 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( R `  F )  =  ( R `  G ) )
1312eqeq1d 2444 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( ( R `
 F )  =  ( 0. `  K
)  <->  ( R `  G )  =  ( 0. `  K ) ) )
1413biimpa 471 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  ( R `  G )  =  ( 0. `  K ) )
15 simpl1 960 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
16 simpl2r 1011 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  G  e.  T )
174, 5, 6, 7, 8trlid0b 30975 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( G  =  (  _I  |`  B )  <-> 
( R `  G
)  =  ( 0.
`  K ) ) )
1815, 16, 17syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  ( G  =  (  _I  |`  B )  <->  ( R `  G )  =  ( 0. `  K ) ) )
1914, 18mpbird 224 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  G  =  (  _I  |`  B ) )
2011, 19eqtr4d 2471 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F
)  =  ( R `
 G ) ) )  /\  ( R `
 F )  =  ( 0. `  K
) )  ->  F  =  G )
2120ex 424 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( ( R `
 F )  =  ( 0. `  K
)  ->  F  =  G ) )
2210, 21sylbid 207 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( F  =  (  _I  |`  B )  ->  F  =  G ) )
2322necon3d 2639 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  ( F  =/= 
G  ->  F  =/=  (  _I  |`  B ) ) )
241, 23mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( F  =/=  G  /\  ( R `  F )  =  ( R `  G ) ) )  ->  F  =/=  (  _I  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599    _I cid 4493    |` cres 4880   ` cfv 5454   Basecbs 13469   0.cp0 14466   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   trLctrl 30955
This theorem is referenced by:  cdlemk43N  31760  cdlemk35u  31761  cdlemk55u1  31762  cdlemk39u1  31764  cdlemk19u1  31766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956
  Copyright terms: Public domain W3C validator