Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Unicode version

Theorem trlnidatb 30988
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 30984? Why do both this and ltrnideq 30986 need trlnidat 30984? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b  |-  B  =  ( Base `  K
)
trlnidatb.a  |-  A  =  ( Atoms `  K )
trlnidatb.h  |-  H  =  ( LHyp `  K
)
trlnidatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlnidatb.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnidatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )

Proof of Theorem trlnidatb
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4  |-  B  =  ( Base `  K
)
2 trlnidatb.a . . . 4  |-  A  =  ( Atoms `  K )
3 trlnidatb.h . . . 4  |-  H  =  ( LHyp `  K
)
4 trlnidatb.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 trlnidatb.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
61, 2, 3, 4, 5trlnidat 30984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)
763expia 1153 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  ->  ( R `  F )  e.  A
) )
8 eqid 2296 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
98, 2, 3lhpexnle 30817 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p ( le `  K ) W )
109adantr 451 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  A  -.  p
( le `  K
) W )
111, 8, 2, 3, 4ltrnideq 30986 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  A  /\  -.  p ( le
`  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <->  ( F `  p )  =  p ) )
12113expa 1151 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <-> 
( F `  p
)  =  p ) )
13 simp1l 979 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( K  e.  HL  /\  W  e.  H ) )
14 simp2 956 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( p  e.  A  /\  -.  p
( le `  K
) W ) )
15 simp1r 980 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  F  e.  T )
16 simp3 957 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( F `  p )  =  p )
17 eqid 2296 . . . . . . . . . . 11  |-  ( 0.
`  K )  =  ( 0. `  K
)
188, 17, 2, 3, 4, 5trl0 30981 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p
( le `  K
) W )  /\  ( F  e.  T  /\  ( F `  p
)  =  p ) )  ->  ( R `  F )  =  ( 0. `  K ) )
1913, 14, 15, 16, 18syl112anc 1186 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( R `  F )  =  ( 0. `  K ) )
20193expia 1153 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  ( R `
 F )  =  ( 0. `  K
) ) )
21 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  K  e.  HL )
22 hlatl 30172 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  AtLat )
2317, 2atn0 30120 . . . . . . . . . . 11  |-  ( ( K  e.  AtLat  /\  ( R `  F )  e.  A )  ->  ( R `  F )  =/=  ( 0. `  K
) )
2423ex 423 . . . . . . . . . 10  |-  ( K  e.  AtLat  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2521, 22, 243syl 18 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2625necon2bd 2508 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  =  ( 0. `  K )  ->  -.  ( R `  F )  e.  A ) )
2720, 26syld 40 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  -.  ( R `  F )  e.  A ) )
2812, 27sylbid 206 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
2928exp32 588 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( p  e.  A  ->  ( -.  p ( le `  K ) W  -> 
( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) ) ) )
3029rexlimdv 2679 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. p  e.  A  -.  p ( le `  K ) W  -> 
( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) ) )
3110, 30mpd 14 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
3231necon2ad 2507 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  ->  F  =/=  (  _I  |`  B ) ) )
337, 32impbid 183 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039    _I cid 4320    |` cres 4707   ` cfv 5271   Basecbs 13164   lecple 13231   0.cp0 14159   Atomscatm 30075   AtLatcal 30076   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  trlid0b  30989  cdlemfnid  31375  trlconid  31536  dih1dimb2  32053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator