Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval3 Unicode version

Theorem trlval3 30376
Description: The value of the trace of a lattice translation in terms of 2 atoms. TODO: Try to shorten proof. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
trlval3.l  |-  .<_  =  ( le `  K )
trlval3.j  |-  .\/  =  ( join `  K )
trlval3.m  |-  ./\  =  ( meet `  K )
trlval3.a  |-  A  =  ( Atoms `  K )
trlval3.h  |-  H  =  ( LHyp `  K
)
trlval3.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlval3.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlval3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( Q  .\/  ( F `  Q
) ) ) )

Proof of Theorem trlval3
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpl31 1036 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
3 simpl2 959 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
4 simpr 447 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( F `  P
)  =  P )
5 trlval3.l . . . . 5  |-  .<_  =  ( le `  K )
6 eqid 2283 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
7 trlval3.a . . . . 5  |-  A  =  ( Atoms `  K )
8 trlval3.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 trlval3.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlval3.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
115, 6, 7, 8, 9, 10trl0 30359 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  ( 0. `  K ) )
121, 2, 3, 4, 11syl112anc 1186 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( R `  F
)  =  ( 0.
`  K ) )
13 simpl33 1038 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  .\/  ( F `  P )
)  =/=  ( Q 
.\/  ( F `  Q ) ) )
14 simpl1l 1006 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  ->  K  e.  HL )
15 hlatl 29550 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  AtLat )
1614, 15syl 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  ->  K  e.  AtLat )
174oveq2d 5874 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  .\/  ( F `  P )
)  =  ( P 
.\/  P ) )
18 simp31l 1078 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  P  e.  A )
1918adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  ->  P  e.  A )
20 trlval3.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
2120, 7hlatjidm 29558 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P  .\/  P
)  =  P )
2214, 19, 21syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  .\/  P
)  =  P )
2317, 22eqtrd 2315 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  .\/  ( F `  P )
)  =  P )
2423, 19eqeltrd 2357 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( P  .\/  ( F `  P )
)  e.  A )
25 simp1 955 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simp2 956 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  F  e.  T )
27 simp31 991 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
28 simp32 992 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
295, 7, 8, 9ltrn2ateq 30369 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  =  P  <->  ( F `  Q )  =  Q ) )
3025, 26, 27, 28, 29syl13anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( ( F `  P )  =  P  <->  ( F `  Q )  =  Q ) )
3130biimpa 470 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( F `  Q
)  =  Q )
3231oveq2d 5874 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( F `  Q )
)  =  ( Q 
.\/  Q ) )
33 simp32l 1080 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  Q  e.  A )
3433adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  ->  Q  e.  A )
3520, 7hlatjidm 29558 . . . . . . . 8  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( Q  .\/  Q
)  =  Q )
3614, 34, 35syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  Q
)  =  Q )
3732, 36eqtrd 2315 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( F `  Q )
)  =  Q )
3837, 34eqeltrd 2357 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( Q  .\/  ( F `  Q )
)  e.  A )
39 trlval3.m . . . . . 6  |-  ./\  =  ( meet `  K )
4039, 6, 7atnem0 29508 . . . . 5  |-  ( ( K  e.  AtLat  /\  ( P  .\/  ( F `  P ) )  e.  A  /\  ( Q 
.\/  ( F `  Q ) )  e.  A )  ->  (
( P  .\/  ( F `  P )
)  =/=  ( Q 
.\/  ( F `  Q ) )  <->  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  =  ( 0.
`  K ) ) )
4116, 24, 38, 40syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) )  <->  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  =  ( 0.
`  K ) ) )
4213, 41mpbid 201 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =  ( 0. `  K
) )
4312, 42eqtr4d 2318 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =  P )  -> 
( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( Q  .\/  ( F `  Q ) ) ) )
44 simpl1 958 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( K  e.  HL  /\  W  e.  H ) )
45 simpl2 959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  F  e.  T )
46 simpl31 1036 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
475, 20, 39, 7, 8, 9, 10trlval2 30352 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
4844, 45, 46, 47syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W ) )
49 simpl1l 1006 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  K  e.  HL )
50 hllat 29553 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
5149, 50syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  K  e.  Lat )
5218adantr 451 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  P  e.  A )
535, 7, 8, 9ltrnat 30329 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
5444, 45, 52, 53syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  e.  A )
55 eqid 2283 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
5655, 20, 7hlatjcl 29556 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
5749, 52, 54, 56syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
58 simpl1r 1007 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  W  e.  H )
5955, 8lhpbase 30187 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
6058, 59syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  W  e.  ( Base `  K ) )
6155, 5, 39latmle1 14182 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  .<_  ( P  .\/  ( F `  P
) ) )
6251, 57, 60, 61syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  .<_  ( P  .\/  ( F `  P )
) )
6348, 62eqbrtrd 4043 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  .<_  ( P  .\/  ( F `  P ) ) )
64 simpl32 1037 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
655, 20, 39, 7, 8, 9, 10trlval2 30352 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( R `  F )  =  ( ( Q  .\/  ( F `  Q )
)  ./\  W )
)
6644, 45, 64, 65syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  =  ( ( Q  .\/  ( F `
 Q ) ) 
./\  W ) )
6733adantr 451 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  Q  e.  A )
685, 7, 8, 9ltrnat 30329 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  Q  e.  A
)  ->  ( F `  Q )  e.  A
)
6944, 45, 67, 68syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  Q
)  e.  A )
7055, 20, 7hlatjcl 29556 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  ( F `  Q )  e.  A )  -> 
( Q  .\/  ( F `  Q )
)  e.  ( Base `  K ) )
7149, 67, 69, 70syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( Q  .\/  ( F `  Q )
)  e.  ( Base `  K ) )
7255, 5, 39latmle1 14182 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  .\/  ( F `
 Q ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( Q  .\/  ( F `  Q ) )  ./\  W )  .<_  ( Q  .\/  ( F `  Q
) ) )
7351, 71, 60, 72syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( Q  .\/  ( F `  Q ) )  ./\  W )  .<_  ( Q  .\/  ( F `  Q )
) )
7466, 73eqbrtrd 4043 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  .<_  ( Q  .\/  ( F `  Q ) ) )
7555, 8, 9, 10trlcl 30353 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
7644, 45, 75syl2anc 642 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  e.  ( Base `  K ) )
7755, 5, 39latlem12 14184 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  ( P  .\/  ( F `  P )
)  e.  ( Base `  K )  /\  ( Q  .\/  ( F `  Q ) )  e.  ( Base `  K
) ) )  -> 
( ( ( R `
 F )  .<_  ( P  .\/  ( F `
 P ) )  /\  ( R `  F )  .<_  ( Q 
.\/  ( F `  Q ) ) )  <-> 
( R `  F
)  .<_  ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) ) ) )
7851, 76, 57, 71, 77syl13anc 1184 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( ( R `
 F )  .<_  ( P  .\/  ( F `
 P ) )  /\  ( R `  F )  .<_  ( Q 
.\/  ( F `  Q ) ) )  <-> 
( R `  F
)  .<_  ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) ) ) )
7963, 74, 78mpbi2and 887 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  .<_  ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) ) )
8049, 15syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  K  e.  AtLat )
81 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( F `  P
)  =/=  P )
825, 7, 8, 9, 10trlat 30358 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
8344, 46, 45, 81, 82syl112anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  e.  A )
8455, 39latmcl 14157 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( F `  Q
) )  e.  (
Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  e.  ( Base `  K ) )
8551, 57, 71, 84syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  e.  ( Base `  K
) )
8655, 5, 6, 7atlen0 29500 . . . . . . 7  |-  ( ( ( K  e.  AtLat  /\  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  e.  ( Base `  K
)  /\  ( R `  F )  e.  A
)  /\  ( R `  F )  .<_  ( ( P  .\/  ( F `
 P ) ) 
./\  ( Q  .\/  ( F `  Q ) ) ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =/=  ( 0. `  K
) )
8780, 85, 83, 79, 86syl31anc 1185 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =/=  ( 0. `  K
) )
8887neneqd 2462 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  ->  -.  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =  ( 0. `  K
) )
89 simpl33 1038 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( P  .\/  ( F `  P )
)  =/=  ( Q 
.\/  ( F `  Q ) ) )
9020, 39, 6, 72atmat0 29715 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  /\  ( Q  e.  A  /\  ( F `  Q
)  e.  A  /\  ( P  .\/  ( F `
 P ) )  =/=  ( Q  .\/  ( F `  Q ) ) ) )  -> 
( ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  e.  A  \/  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =  ( 0. `  K
) ) )
9149, 52, 54, 67, 69, 89, 90syl33anc 1197 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  e.  A  \/  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =  ( 0. `  K
) ) )
9291ord 366 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( -.  ( ( P  .\/  ( F `
 P ) ) 
./\  ( Q  .\/  ( F `  Q ) ) )  e.  A  ->  ( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  =  ( 0. `  K
) ) )
9388, 92mt3d 117 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( P  .\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `  Q
) ) )  e.  A )
945, 7atcmp 29501 . . . 4  |-  ( ( K  e.  AtLat  /\  ( R `  F )  e.  A  /\  (
( P  .\/  ( F `  P )
)  ./\  ( Q  .\/  ( F `  Q
) ) )  e.  A )  ->  (
( R `  F
)  .<_  ( ( P 
.\/  ( F `  P ) )  ./\  ( Q  .\/  ( F `
 Q ) ) )  <->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( Q  .\/  ( F `  Q
) ) ) ) )
9580, 83, 93, 94syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( ( R `  F )  .<_  ( ( P  .\/  ( F `
 P ) ) 
./\  ( Q  .\/  ( F `  Q ) ) )  <->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( Q  .\/  ( F `  Q
) ) ) ) )
9679, 95mpbid 201 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q  .\/  ( F `  Q )
) ) )  /\  ( F `  P )  =/=  P )  -> 
( R `  F
)  =  ( ( P  .\/  ( F `
 P ) ) 
./\  ( Q  .\/  ( F `  Q ) ) ) )
9743, 96pm2.61dane 2524 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  .\/  ( F `  P ) )  =/=  ( Q 
.\/  ( F `  Q ) ) ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  ( Q  .\/  ( F `  Q
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   0.cp0 14143   Latclat 14151   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  trlval4  30377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator