MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trnei Unicode version

Theorem trnei 17587
Description: The trace, over a set  A, of the filter of the neighborhoods of a point  P is a filter iff  P belongs to the closure of  A. (This is trfil2 17582 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trnei  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  ( (
( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A ) ) )

Proof of Theorem trnei
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 topontop 16664 . . . 4  |-  ( J  e.  (TopOn `  Y
)  ->  J  e.  Top )
213ad2ant1 976 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  J  e.  Top )
3 simp2 956 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  A  C_  Y )
4 toponuni 16665 . . . . 5  |-  ( J  e.  (TopOn `  Y
)  ->  Y  =  U. J )
543ad2ant1 976 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  Y  =  U. J )
63, 5sseqtrd 3214 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  A  C_ 
U. J )
7 simp3 957 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  P  e.  Y )
87, 5eleqtrd 2359 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  P  e.  U. J )
9 eqid 2283 . . . 4  |-  U. J  =  U. J
109neindisj2 16860 . . 3  |-  ( ( J  e.  Top  /\  A  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  A )  <->  A. v  e.  ( ( nei `  J ) `
 { P }
) ( v  i^i 
A )  =/=  (/) ) )
112, 6, 8, 10syl3anc 1182 . 2  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  A. v  e.  ( ( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
12 simp1 955 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  J  e.  (TopOn `  Y )
)
137snssd 3760 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  { P }  C_  Y )
14 snnzg 3743 . . . . 5  |-  ( P  e.  Y  ->  { P }  =/=  (/) )
15143ad2ant3 978 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  { P }  =/=  (/) )
16 neifil 17575 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  { P }  C_  Y  /\  { P }  =/=  (/) )  -> 
( ( nei `  J
) `  { P } )  e.  ( Fil `  Y ) )
1712, 13, 15, 16syl3anc 1182 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  (
( nei `  J
) `  { P } )  e.  ( Fil `  Y ) )
18 trfil2 17582 . . 3  |-  ( ( ( ( nei `  J
) `  { P } )  e.  ( Fil `  Y )  /\  A  C_  Y
)  ->  ( (
( ( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A )  <->  A. v  e.  (
( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
1917, 3, 18syl2anc 642 . 2  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  (
( ( ( nei `  J ) `  { P } )t  A )  e.  ( Fil `  A )  <->  A. v  e.  (
( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
2011, 19bitr4d 247 1  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  ( (
( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   U.cuni 3827   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631  TopOnctopon 16632   clsccl 16755   neicnei 16834   Filcfil 17540
This theorem is referenced by:  limcflflem  19230  islimrs3  25581  islimrs4  25582
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rest 13327  df-top 16636  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-fbas 17520  df-fil 17541
  Copyright terms: Public domain W3C validator