Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpred0 Structured version   Unicode version

Theorem trpred0 25514
Description: The class of transitive predecessors is empty when  A is empty. (Contributed by Scott Fenton, 30-Apr-2012.)
Assertion
Ref Expression
trpred0  |-  TrPred ( R ,  (/) ,  X )  =  (/)

Proof of Theorem trpred0
Dummy variables  a 
i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 25497 . 2  |-  TrPred ( R ,  (/) ,  X )  =  U_ i  e. 
om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  (/)
,  y ) ) ,  Pred ( R ,  (/)
,  X ) )  |`  om ) `  i
)
2 pred0 25474 . . . . . . . . . . 11  |-  Pred ( R ,  (/) ,  y )  =  (/)
32a1i 11 . . . . . . . . . 10  |-  ( y  e.  a  ->  Pred ( R ,  (/) ,  y )  =  (/) )
43iuneq2i 4111 . . . . . . . . 9  |-  U_ y  e.  a  Pred ( R ,  (/) ,  y )  =  U_ y  e.  a  (/)
5 iun0 4147 . . . . . . . . 9  |-  U_ y  e.  a  (/)  =  (/)
64, 5eqtri 2456 . . . . . . . 8  |-  U_ y  e.  a  Pred ( R ,  (/) ,  y )  =  (/)
76mpteq2i 4292 . . . . . . 7  |-  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) )  =  ( a  e.  _V  |->  (/) )
8 pred0 25474 . . . . . . 7  |-  Pred ( R ,  (/) ,  X
)  =  (/)
9 rdgeq12 6671 . . . . . . 7  |-  ( ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) )  =  ( a  e.  _V  |->  (/) )  /\  Pred ( R ,  (/)
,  X )  =  (/) )  ->  rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) ) ,  Pred ( R ,  (/) ,  X
) )  =  rec ( ( a  e. 
_V  |->  (/) ) ,  (/) ) )
107, 8, 9mp2an 654 . . . . . 6  |-  rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) ) ,  Pred ( R ,  (/) ,  X
) )  =  rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )
1110reseq1i 5142 . . . . 5  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  (/)
,  y ) ) ,  Pred ( R ,  (/)
,  X ) )  |`  om )  =  ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om )
1211fveq1i 5729 . . . 4  |-  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) ) ,  Pred ( R ,  (/) ,  X
) )  |`  om ) `  i )  =  ( ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )
13 nn0suc 4869 . . . . 5  |-  ( i  e.  om  ->  (
i  =  (/)  \/  E. j  e.  om  i  =  suc  j ) )
14 fveq2 5728 . . . . . . 7  |-  ( i  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  ( ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  (/) ) )
15 0ex 4339 . . . . . . . 8  |-  (/)  e.  _V
16 fr0g 6693 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( ( rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )  |`  om ) `  (/) )  =  (/) )
1715, 16ax-mp 8 . . . . . . 7  |-  ( ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  (/) )  =  (/)
1814, 17syl6eq 2484 . . . . . 6  |-  ( i  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/) )
19 nfcv 2572 . . . . . . . . . 10  |-  F/_ a (/)
20 nfcv 2572 . . . . . . . . . 10  |-  F/_ a
j
21 eqid 2436 . . . . . . . . . 10  |-  ( rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )  |`  om )  =  ( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om )
22 eqidd 2437 . . . . . . . . . 10  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )  |`  om ) `  j )  ->  (/)  =  (/) )
2319, 20, 19, 21, 22frsucmpt 6695 . . . . . . . . 9  |-  ( ( j  e.  om  /\  (/) 
e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  suc  j
)  =  (/) )
2415, 23mpan2 653 . . . . . . . 8  |-  ( j  e.  om  ->  (
( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  suc  j
)  =  (/) )
25 fveq2 5728 . . . . . . . . 9  |-  ( i  =  suc  j  -> 
( ( rec (
( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  ( ( rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )  |`  om ) `  suc  j ) )
2625eqeq1d 2444 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( ( ( rec ( ( a  e. 
_V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/)  <->  (
( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  suc  j
)  =  (/) ) )
2724, 26syl5ibrcom 214 . . . . . . 7  |-  ( j  e.  om  ->  (
i  =  suc  j  ->  ( ( rec (
( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/) ) )
2827rexlimiv 2824 . . . . . 6  |-  ( E. j  e.  om  i  =  suc  j  ->  (
( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/) )
2918, 28jaoi 369 . . . . 5  |-  ( ( i  =  (/)  \/  E. j  e.  om  i  =  suc  j )  -> 
( ( rec (
( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/) )
3013, 29syl 16 . . . 4  |-  ( i  e.  om  ->  (
( rec ( ( a  e.  _V  |->  (/) ) ,  (/) )  |`  om ) `  i )  =  (/) )
3112, 30syl5eq 2480 . . 3  |-  ( i  e.  om  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  (/) ,  y ) ) ,  Pred ( R ,  (/) ,  X
) )  |`  om ) `  i )  =  (/) )
3231iuneq2i 4111 . 2  |-  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  (/)
,  y ) ) ,  Pred ( R ,  (/)
,  X ) )  |`  om ) `  i
)  =  U_ i  e.  om  (/)
33 iun0 4147 . 2  |-  U_ i  e.  om  (/)  =  (/)
341, 32, 333eqtri 2460 1  |-  TrPred ( R ,  (/) ,  X )  =  (/)
Colors of variables: wff set class
Syntax hints:    \/ wo 358    = wceq 1652    e. wcel 1725   E.wrex 2706   _Vcvv 2956   (/)c0 3628   U_ciun 4093    e. cmpt 4266   suc csuc 4583   omcom 4845    |` cres 4880   ` cfv 5454   reccrdg 6667   Predcpred 25438   TrPredctrpred 25495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-pred 25439  df-trpred 25496
  Copyright terms: Public domain W3C validator