Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredelss Structured version   Unicode version

Theorem trpredelss 25510
Description: Given a transitive predecessor  Y of  X, the transitive predecessors of  Y are a subset of the transitive predecessors of  X. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredelss  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )

Proof of Theorem trpredelss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 setlikespec 25462 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
2 trpredss 25507 . . . . 5  |-  ( Pred ( R ,  A ,  X )  e.  _V  -> 
TrPred ( R ,  A ,  X )  C_  A
)
31, 2syl 16 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  TrPred ( R ,  A ,  X
)  C_  A )
43sselda 3348 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  Y  e.  A )
5 simplr 732 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  R Se  A )
6 trpredtr 25508 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  TrPred ( R ,  A ,  X
)  ->  Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X
) ) )
76ralrimiv 2788 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. y  e.  TrPred  ( R ,  A ,  X ) Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
87adantr 452 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  A. y  e.  TrPred  ( R ,  A ,  X ) Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
9 trpredtr 25508 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  Pred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )
109imp 419 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  Pred ( R ,  A ,  Y )  C_  TrPred ( R ,  A ,  X
) )
11 trpredmintr 25509 . . 3  |-  ( ( ( Y  e.  A  /\  R Se  A )  /\  ( A. y  e. 
TrPred  ( R ,  A ,  X ) Pred ( R ,  A , 
y )  C_  TrPred ( R ,  A ,  X
)  /\  Pred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )  ->  TrPred ( R ,  A ,  Y )  C_  TrPred ( R ,  A ,  X
) )
124, 5, 8, 10, 11syl22anc 1185 . 2  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) )
1312ex 424 1  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320   Se wse 4539   Predcpred 25438   TrPredctrpred 25495
This theorem is referenced by:  dftrpred3g  25511
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-pred 25439  df-trpred 25496
  Copyright terms: Public domain W3C validator