Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq3 Structured version   Unicode version

Theorem trpredeq3 25492
 Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq3

Proof of Theorem trpredeq3
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq3 25435 . . . . . 6
2 rdgeq2 6662 . . . . . 6
31, 2syl 16 . . . . 5
43reseq1d 5137 . . . 4
54rneqd 5089 . . 3
65unieqd 4018 . 2
7 df-trpred 25488 . 2
8 df-trpred 25488 . 2
96, 7, 83eqtr4g 2492 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652  cvv 2948  cuni 4007  ciun 4085   cmpt 4258  com 4837   crn 4871   cres 4872  crdg 6659  cpred 25430  ctrpred 25487 This theorem is referenced by:  trpredeq3d  25495  dftrpred3g  25503 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-recs 6625  df-rdg 6660  df-pred 25431  df-trpred 25488
 Copyright terms: Public domain W3C validator