Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredmintr Structured version   Unicode version

Theorem trpredmintr 25509
Description: The transitive predecessors form the smallest class transitive in  R and  A. That is, if  B is another  R,  A transitive class containing  Pred ( R ,  A ,  X ), then  TrPred ( R ,  A ,  X )  C_  B (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredmintr  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  TrPred ( R ,  A ,  X
)  C_  B )
Distinct variable groups:    y, A    y, R    y, X    y, B

Proof of Theorem trpredmintr
Dummy variables  a 
c  d  i  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 25497 . 2  |-  TrPred ( R ,  A ,  X
)  =  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )
2 fveq2 5728 . . . . . . . 8  |-  ( j  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) )
32sseq1d 3375 . . . . . . 7  |-  ( j  =  (/)  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
)
43imbi2d 308 . . . . . 6  |-  ( j  =  (/)  ->  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
) )
5 fveq2 5728 . . . . . . . 8  |-  ( j  =  k  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) )
65sseq1d 3375 . . . . . . 7  |-  ( j  =  k  ->  (
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )
76imbi2d 308 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) ) )
8 fveq2 5728 . . . . . . . 8  |-  ( j  =  suc  k  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k ) )
98sseq1d 3375 . . . . . . 7  |-  ( j  =  suc  k  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j ) 
C_  B  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  k
)  C_  B )
)
109imbi2d 308 . . . . . 6  |-  ( j  =  suc  k  -> 
( ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
11 fveq2 5728 . . . . . . . 8  |-  ( j  =  i  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )
1211sseq1d 3375 . . . . . . 7  |-  ( j  =  i  ->  (
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
1312imbi2d 308 . . . . . 6  |-  ( j  =  i  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) ) )
14 setlikespec 25462 . . . . . . . . 9  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
15 fr0g 6693 . . . . . . . . 9  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
1614, 15syl 16 . . . . . . . 8  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
1716adantr 452 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
18 simprr 734 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  Pred ( R ,  A ,  X )  C_  B
)
1917, 18eqsstrd 3382 . . . . . 6  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
20 fvex 5742 . . . . . . . . . . 11  |-  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  e.  _V
21 trpredlem1 25505 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  A
)
2214, 21syl 16 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  A
)
2322sseld 3347 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  y  e.  A
) )
24 setlikespec 25462 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
y )  e.  _V )
2524expcom 425 . . . . . . . . . . . . . . 15  |-  ( R Se  A  ->  ( y  e.  A  ->  Pred ( R ,  A , 
y )  e.  _V ) )
2625adantl 453 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  A  ->  Pred ( R ,  A ,  y )  e. 
_V ) )
2723, 26syld 42 . . . . . . . . . . . . 13  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  Pred ( R ,  A ,  y )  e.  _V ) )
2827ralrimiv 2788 . . . . . . . . . . . 12  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
2928ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
30 iunexg 5987 . . . . . . . . . . 11  |-  ( ( ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  e.  _V  /\ 
A. y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )  ->  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
3120, 29, 30sylancr 645 . . . . . . . . . 10  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  U_ y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
32 nfcv 2572 . . . . . . . . . . 11  |-  F/_ a Pred ( R ,  A ,  X )
33 nfcv 2572 . . . . . . . . . . 11  |-  F/_ a
k
34 nfcv 2572 . . . . . . . . . . 11  |-  F/_ a U_ y  e.  (
( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )
35 eqid 2436 . . . . . . . . . . 11  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
36 predeq3 25443 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  d  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
d ) )
3736cbviunv 4130 . . . . . . . . . . . . . . . . 17  |-  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ d  e.  a  Pred ( R ,  A ,  d )
38 iuneq1 4106 . . . . . . . . . . . . . . . . 17  |-  ( a  =  c  ->  U_ d  e.  a  Pred ( R ,  A ,  d )  =  U_ d  e.  c  Pred ( R ,  A ,  d ) )
3937, 38syl5eq 2480 . . . . . . . . . . . . . . . 16  |-  ( a  =  c  ->  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ d  e.  c  Pred ( R ,  A ,  d ) )
4039cbvmptv 4300 . . . . . . . . . . . . . . 15  |-  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) )  =  ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) )
41 rdgeq1 6669 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) ) )
42 reseq1 5140 . . . . . . . . . . . . . . 15  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  -> 
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  =  ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) )
4340, 41, 42mp2b 10 . . . . . . . . . . . . . 14  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
4443fveq1i 5729 . . . . . . . . . . . . 13  |-  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  =  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
4544eqeq2i 2446 . . . . . . . . . . . 12  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  <-> 
a  =  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k ) )
46 iuneq1 4106 . . . . . . . . . . . 12  |-  ( a  =  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  U_ y  e.  a 
Pred ( R ,  A ,  y )  =  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y ) )
4745, 46sylbi 188 . . . . . . . . . . 11  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  U_ y  e.  a 
Pred ( R ,  A ,  y )  =  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y ) )
4832, 33, 34, 35, 47frsucmpt 6695 . . . . . . . . . 10  |-  ( ( k  e.  om  /\  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  =  U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )
)
4931, 48sylan2 461 . . . . . . . . 9  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  =  U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )
)
5044sseq1i 3372 . . . . . . . . . . . 12  |-  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B  <->  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)
5150anbi2i 676 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )
52 nfv 1629 . . . . . . . . . . . . . . 15  |-  F/ y ( X  e.  A  /\  R Se  A )
53 nfra1 2756 . . . . . . . . . . . . . . . 16  |-  F/ y A. y  e.  B  Pred ( R ,  A ,  y )  C_  B
54 nfv 1629 . . . . . . . . . . . . . . . 16  |-  F/ y
Pred ( R ,  A ,  X )  C_  B
5553, 54nfan 1846 . . . . . . . . . . . . . . 15  |-  F/ y ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
)
5652, 55nfan 1846 . . . . . . . . . . . . . 14  |-  F/ y ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )
57 nfv 1629 . . . . . . . . . . . . . 14  |-  F/ y ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
5856, 57nfan 1846 . . . . . . . . . . . . 13  |-  F/ y ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)
59 ssel 3342 . . . . . . . . . . . . . 14  |-  ( ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B  ->  ( y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  ->  y  e.  B ) )
60 rsp 2766 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  ->  ( y  e.  B  ->  Pred ( R ,  A ,  y )  C_  B ) )
6160ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
y  e.  B  ->  Pred ( R ,  A ,  y )  C_  B ) )
6259, 61sylan9r 640 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  ( y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  ->  Pred ( R ,  A , 
y )  C_  B
) )
6358, 62ralrimi 2787 . . . . . . . . . . . 12  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6463adantl 453 . . . . . . . . . . 11  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6551, 64sylan2b 462 . . . . . . . . . 10  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
66 iunss 4132 . . . . . . . . . 10  |-  ( U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )  C_  B  <->  A. y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6765, 66sylibr 204 . . . . . . . . 9  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  U_ y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6849, 67eqsstrd 3382 . . . . . . . 8  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
)
6968exp32 589 . . . . . . 7  |-  ( k  e.  om  ->  (
( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k ) 
C_  B  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
7069a2d 24 . . . . . 6  |-  ( k  e.  om  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  ( (
( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
714, 7, 10, 13, 19, 70finds 4871 . . . . 5  |-  ( i  e.  om  ->  (
( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
7271com12 29 . . . 4  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
7372ralrimiv 2788 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  A. i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  B )
74 iunss 4132 . . 3  |-  ( U_ i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B  <->  A. i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
)
7573, 74sylibr 204 . 2  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  B )
761, 75syl5eqss 3392 1  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  TrPred ( R ,  A ,  X
)  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320   (/)c0 3628   U_ciun 4093    e. cmpt 4266   Se wse 4539   suc csuc 4583   omcom 4845    |` cres 4880   ` cfv 5454   reccrdg 6667   Predcpred 25438   TrPredctrpred 25495
This theorem is referenced by:  trpredelss  25510  dftrpred3g  25511  trpredpo  25513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-pred 25439  df-trpred 25496
  Copyright terms: Public domain W3C validator