Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredrec Unicode version

Theorem trpredrec 24312
Description: If  Y is an  R,  A transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between  Y and  X (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredrec  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  ( Y  e.  Pred ( R ,  A ,  X )  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
Distinct variable groups:    z, A    z, R    z, X    z, Y

Proof of Theorem trpredrec
Dummy variables  a 
i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltrpred 24300 . 2  |-  ( Y  e.  TrPred ( R ,  A ,  X )  <->  E. i  e.  om  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )
2 nn0suc 4696 . . . 4  |-  ( i  e.  om  ->  (
i  =  (/)  \/  E. j  e.  om  i  =  suc  j ) )
3 fveq2 5541 . . . . . . . . . . 11  |-  ( i  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) )
43eleq2d 2363 . . . . . . . . . 10  |-  ( i  =  (/)  ->  ( Y  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  <-> 
Y  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) ) )
54anbi2d 684 . . . . . . . . 9  |-  ( i  =  (/)  ->  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  <->  ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) ) ) ) )
65biimpd 198 . . . . . . . 8  |-  ( i  =  (/)  ->  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( ( X  e.  A  /\  R Se  A
)  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) ) ) ) )
7 setlikespec 24258 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
8 fr0g 6464 . . . . . . . . . . 11  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
97, 8syl 15 . . . . . . . . . 10  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
109eleq2d 2363 . . . . . . . . 9  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) )  <->  Y  e.  Pred ( R ,  A ,  X ) ) )
1110biimpa 470 . . . . . . . 8  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) ) )  ->  Y  e.  Pred ( R ,  A ,  X )
)
126, 11syl6com 31 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( i  =  (/)  ->  Y  e.  Pred ( R ,  A ,  X ) ) )
13 fveq2 5541 . . . . . . . . . . . . 13  |-  ( i  =  suc  j  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )
1413eleq2d 2363 . . . . . . . . . . . 12  |-  ( i  =  suc  j  -> 
( Y  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  <->  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) ) )
1514anbi2d 684 . . . . . . . . . . 11  |-  ( i  =  suc  j  -> 
( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  <->  ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) ) ) )
1615biimpd 198 . . . . . . . . . 10  |-  ( i  =  suc  j  -> 
( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( ( X  e.  A  /\  R Se  A
)  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) ) ) )
17 fvex 5555 . . . . . . . . . . . . . . . . 17  |-  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  e.  _V
18 trpredlem1 24301 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  A
)
197, 18syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  A
)
2019sseld 3192 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  z  e.  A
) )
21 setlikespec 24258 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
z )  e.  _V )
2221expcom 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( R Se  A  ->  ( z  e.  A  ->  Pred ( R ,  A , 
z )  e.  _V ) )
2322adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  A  ->  Pred ( R ,  A ,  z )  e. 
_V ) )
2420, 23syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  Pred ( R ,  A ,  z )  e.  _V ) )
2524ralrimiv 2638 . . . . . . . . . . . . . . . . 17  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  e.  _V )
26 iunexg 5783 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  e.  _V  /\ 
A. z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  e.  _V )  ->  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  e.  _V )
2717, 25, 26sylancr 644 . . . . . . . . . . . . . . . 16  |-  ( ( X  e.  A  /\  R Se  A )  ->  U_ z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  e.  _V )
28 nfcv 2432 . . . . . . . . . . . . . . . . 17  |-  F/_ a Pred ( R ,  A ,  X )
29 nfcv 2432 . . . . . . . . . . . . . . . . 17  |-  F/_ a
j
30 nfmpt1 4125 . . . . . . . . . . . . . . . . . . . . 21  |-  F/_ a
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )
3130, 28nfrdg 6443 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )
32 nfcv 2432 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ a om
3331, 32nfres 4973 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )
3433, 29nffv 5548 . . . . . . . . . . . . . . . . . 18  |-  F/_ a
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )
35 nfcv 2432 . . . . . . . . . . . . . . . . . 18  |-  F/_ a Pred ( R ,  A ,  z )
3634, 35nfiun 3947 . . . . . . . . . . . . . . . . 17  |-  F/_ a U_ z  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )
37 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
38 predeq3 24242 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
3938cbviunv 3957 . . . . . . . . . . . . . . . . . 18  |-  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ z  e.  a  Pred ( R ,  A ,  z )
40 iuneq1 3934 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  U_ z  e.  a 
Pred ( R ,  A ,  z )  =  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z ) )
4139, 40syl5eq 2340 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  U_ y  e.  a 
Pred ( R ,  A ,  y )  =  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z ) )
4228, 29, 36, 37, 41frsucmpt 6466 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  om  /\  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  z )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  =  U_ z  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  z )
)
4327, 42sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  om  /\  ( X  e.  A  /\  R Se  A )
)  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  =  U_ z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z ) )
4443eleq2d 2363 . . . . . . . . . . . . . 14  |-  ( ( j  e.  om  /\  ( X  e.  A  /\  R Se  A )
)  ->  ( Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  <->  Y  e.  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  z )
) )
4544biimpd 198 . . . . . . . . . . . . 13  |-  ( ( j  e.  om  /\  ( X  e.  A  /\  R Se  A )
)  ->  ( Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  ->  Y  e.  U_ z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z ) ) )
4645expimpd 586 . . . . . . . . . . . 12  |-  ( j  e.  om  ->  (
( ( X  e.  A  /\  R Se  A
)  /\  Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )  ->  Y  e.  U_ z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z ) ) )
47 eliun 3925 . . . . . . . . . . . . 13  |-  ( Y  e.  U_ z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  <->  E. z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Y  e. 
Pred ( R ,  A ,  z )
)
48 ssiun2 3961 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  om  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  U_ j  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j ) )
49 dftrpred2 24293 . . . . . . . . . . . . . . . . . 18  |-  TrPred ( R ,  A ,  X
)  =  U_ j  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
5048, 49syl6sseqr 3238 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  om  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  TrPred ( R ,  A ,  X
) )
5150sseld 3192 . . . . . . . . . . . . . . . 16  |-  ( j  e.  om  ->  (
z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  z  e.  TrPred ( R ,  A ,  X ) ) )
52 vex 2804 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
5352elpredim 24247 . . . . . . . . . . . . . . . . 17  |-  ( Y  e.  Pred ( R ,  A ,  z )  ->  Y R z )
5453a1i 10 . . . . . . . . . . . . . . . 16  |-  ( j  e.  om  ->  ( Y  e.  Pred ( R ,  A ,  z )  ->  Y R
z ) )
5551, 54anim12d 546 . . . . . . . . . . . . . . 15  |-  ( j  e.  om  ->  (
( z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  /\  Y  e.  Pred ( R ,  A ,  z )
)  ->  ( z  e.  TrPred ( R ,  A ,  X )  /\  Y R z ) ) )
5655reximdv2 2665 . . . . . . . . . . . . . 14  |-  ( j  e.  om  ->  ( E. z  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Y  e. 
Pred ( R ,  A ,  z )  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) )
5756com12 27 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j ) Y  e.  Pred ( R ,  A , 
z )  ->  (
j  e.  om  ->  E. z  e.  TrPred  ( R ,  A ,  X
) Y R z ) )
5847, 57sylbi 187 . . . . . . . . . . . 12  |-  ( Y  e.  U_ z  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
z )  ->  (
j  e.  om  ->  E. z  e.  TrPred  ( R ,  A ,  X
) Y R z ) )
5946, 58syl6com 31 . . . . . . . . . . 11  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )  -> 
( j  e.  om  ->  ( j  e.  om  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
6059pm2.43d 44 . . . . . . . . . 10  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )  -> 
( j  e.  om  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) )
6116, 60syl6com 31 . . . . . . . . 9  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( i  =  suc  j  ->  ( j  e. 
om  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
6261com23 72 . . . . . . . 8  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( j  e.  om  ->  ( i  =  suc  j  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
6362rexlimdv 2679 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( E. j  e. 
om  i  =  suc  j  ->  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) )
6412, 63orim12d 811 . . . . . 6  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )  -> 
( ( i  =  (/)  \/  E. j  e. 
om  i  =  suc  j )  ->  ( Y  e.  Pred ( R ,  A ,  X
)  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
6564ex 423 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  ->  ( ( i  =  (/)  \/  E. j  e.  om  i  =  suc  j )  ->  ( Y  e.  Pred ( R ,  A ,  X
)  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) ) )
6665com23 72 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( i  =  (/)  \/ 
E. j  e.  om  i  =  suc  j )  ->  ( Y  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  ->  ( Y  e.  Pred ( R ,  A ,  X
)  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) ) )
672, 66syl5 28 . . 3  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
i  e.  om  ->  ( Y  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  ->  ( Y  e. 
Pred ( R ,  A ,  X )  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) ) )
6867rexlimdv 2679 . 2  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( E. i  e.  om  Y  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  ->  ( Y  e. 
Pred ( R ,  A ,  X )  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
691, 68syl5bi 208 1  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  ( Y  e.  Pred ( R ,  A ,  X )  \/  E. z  e.  TrPred  ( R ,  A ,  X ) Y R z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U_ciun 3921   class class class wbr 4039    e. cmpt 4093   Se wse 4366   suc csuc 4410   omcom 4672    |` cres 4707   ` cfv 5271   reccrdg 6438   Predcpred 24238   TrPredctrpred 24291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-pred 24239  df-trpred 24292
  Copyright terms: Public domain W3C validator