MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truanfal Unicode version

Theorem truanfal 1327
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal  |-  ( (  T.  /\  F.  )  <->  F.  )

Proof of Theorem truanfal
StepHypRef Expression
1 fal 1313 . . 3  |-  -.  F.
21intnan 880 . 2  |-  -.  (  T.  /\  F.  )
32bifal 1318 1  |-  ( (  T.  /\  F.  )  <->  F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307    F. wfal 1308
This theorem is referenced by:  trunanfal  1345
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-fal 1311
  Copyright terms: Public domain W3C validator