MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truantru Unicode version

Theorem truantru 1326
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truantru  |-  ( (  T.  /\  T.  )  <->  T.  )

Proof of Theorem truantru
StepHypRef Expression
1 anidm 625 1  |-  ( (  T.  /\  T.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator