MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trufil Unicode version

Theorem trufil 17605
Description: Conditions for the trace of an ultrafilter  L to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
trufil  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  A  e.  L ) )

Proof of Theorem trufil
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ufilfil 17599 . . . 4  |-  ( ( Lt  A )  e.  (
UFil `  A )  ->  ( Lt  A )  e.  ( Fil `  A ) )
2 ufilfil 17599 . . . . 5  |-  ( L  e.  ( UFil `  Y
)  ->  L  e.  ( Fil `  Y ) )
3 trfil3 17583 . . . . 5  |-  ( ( L  e.  ( Fil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
42, 3sylan 457 . . . 4  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  ( Fil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
51, 4syl5ib 210 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  ->  -.  ( Y  \  A )  e.  L
) )
64biimprd 214 . . . . 5  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( Lt  A )  e.  ( Fil `  A ) ) )
7 elpwi 3633 . . . . . . 7  |-  ( x  e.  ~P A  ->  x  C_  A )
8 simpll 730 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  L  e.  ( UFil `  Y )
)
9 simpr 447 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  x  C_  A
)
10 simplr 731 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  A  C_  Y
)
119, 10sstrd 3189 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  x  C_  Y
)
12 ufilss 17600 . . . . . . . . 9  |-  ( ( L  e.  ( UFil `  Y )  /\  x  C_  Y )  ->  (
x  e.  L  \/  ( Y  \  x
)  e.  L ) )
138, 11, 12syl2anc 642 . . . . . . . 8  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  \/  ( Y  \  x )  e.  L ) )
14 id 19 . . . . . . . . . . . . 13  |-  ( A 
C_  Y  ->  A  C_  Y )
15 elfvdm 5554 . . . . . . . . . . . . 13  |-  ( L  e.  ( UFil `  Y
)  ->  Y  e.  dom  UFil )
16 ssexg 4160 . . . . . . . . . . . . 13  |-  ( ( A  C_  Y  /\  Y  e.  dom  UFil )  ->  A  e.  _V )
1714, 15, 16syl2anr 464 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  A  e.  _V )
18 elrestr 13333 . . . . . . . . . . . . 13  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V  /\  x  e.  L )  ->  (
x  i^i  A )  e.  ( Lt  A ) )
19183expia 1153 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V )  ->  (
x  e.  L  -> 
( x  i^i  A
)  e.  ( Lt  A ) ) )
2017, 19syldan 456 . . . . . . . . . . 11  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
x  e.  L  -> 
( x  i^i  A
)  e.  ( Lt  A ) ) )
2120adantr 451 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  ->  ( x  i^i  A )  e.  ( Lt  A ) ) )
22 df-ss 3166 . . . . . . . . . . . 12  |-  ( x 
C_  A  <->  ( x  i^i  A )  =  x )
239, 22sylib 188 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  i^i  A )  =  x )
2423eleq1d 2349 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( (
x  i^i  A )  e.  ( Lt  A )  <->  x  e.  ( Lt  A ) ) )
2521, 24sylibd 205 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  L  ->  x  e.  ( Lt  A ) ) )
26 indif1 3413 . . . . . . . . . . . 12  |-  ( ( Y  \  x )  i^i  A )  =  ( ( Y  i^i  A )  \  x )
27 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  A  C_  Y )
28 dfss1 3373 . . . . . . . . . . . . . 14  |-  ( A 
C_  Y  <->  ( Y  i^i  A )  =  A )
2927, 28sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( Y  i^i  A )  =  A )
3029difeq1d 3293 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  i^i  A
)  \  x )  =  ( A  \  x ) )
3126, 30syl5eq 2327 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  \  x
)  i^i  A )  =  ( A  \  x ) )
32 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  L  e.  ( UFil `  Y
) )
3317adantr 451 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  A  e.  _V )
34 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( Y  \  x )  e.  L )
35 elrestr 13333 . . . . . . . . . . . 12  |-  ( ( L  e.  ( UFil `  Y )  /\  A  e.  _V  /\  ( Y 
\  x )  e.  L )  ->  (
( Y  \  x
)  i^i  A )  e.  ( Lt  A ) )
3632, 33, 34, 35syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  (
( Y  \  x
)  i^i  A )  e.  ( Lt  A ) )
3731, 36eqeltrrd 2358 . . . . . . . . . 10  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  ( x  C_  A  /\  ( Y  \  x )  e.  L
) )  ->  ( A  \  x )  e.  ( Lt  A ) )
3837expr 598 . . . . . . . . 9  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( ( Y  \  x )  e.  L  ->  ( A  \  x )  e.  ( Lt  A ) ) )
3925, 38orim12d 811 . . . . . . . 8  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( (
x  e.  L  \/  ( Y  \  x
)  e.  L )  ->  ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) )
4013, 39mpd 14 . . . . . . 7  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  C_  A
)  ->  ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) )
417, 40sylan2 460 . . . . . 6  |-  ( ( ( L  e.  (
UFil `  Y )  /\  A  C_  Y )  /\  x  e.  ~P A )  ->  (
x  e.  ( Lt  A )  \/  ( A 
\  x )  e.  ( Lt  A ) ) )
4241ralrimiva 2626 . . . . 5  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  A. x  e.  ~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) )
436, 42jctird 528 . . . 4  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( ( Lt  A )  e.  ( Fil `  A
)  /\  A. x  e.  ~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) ) )
44 isufil 17598 . . . 4  |-  ( ( Lt  A )  e.  (
UFil `  A )  <->  ( ( Lt  A )  e.  ( Fil `  A )  /\  A. x  e. 
~P  A ( x  e.  ( Lt  A )  \/  ( A  \  x )  e.  ( Lt  A ) ) ) )
4543, 44syl6ibr 218 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  -> 
( Lt  A )  e.  (
UFil `  A )
) )
465, 45impbid 183 . 2  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  -.  ( Y  \  A
)  e.  L ) )
47 ufilb 17601 . . 3  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  A  e.  L  <->  ( Y  \  A )  e.  L ) )
4847con1bid 320 . 2  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  ( -.  ( Y  \  A
)  e.  L  <->  A  e.  L ) )
4946, 48bitrd 244 1  |-  ( ( L  e.  ( UFil `  Y )  /\  A  C_  Y )  ->  (
( Lt  A )  e.  (
UFil `  A )  <->  A  e.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   dom cdm 4689   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Filcfil 17540   UFilcufil 17594
This theorem is referenced by:  ssufl  17613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rest 13327  df-fbas 17520  df-fg 17521  df-fil 17541  df-ufil 17596
  Copyright terms: Public domain W3C validator