MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunantru Structured version   Unicode version

Theorem trunantru 1363
Description: A  -/\ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
trunantru  |-  ( (  T.  -/\  T.  )  <->  F.  )

Proof of Theorem trunantru
StepHypRef Expression
1 nannot 1302 . 2  |-  ( -.  T.  <->  (  T.  -/\  T.  ) )
2 nottru 1357 . 2  |-  ( -.  T.  <->  F.  )
31, 2bitr3i 243 1  |-  ( (  T.  -/\  T.  )  <->  F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    -/\ wnan 1296    T. wtru 1325    F. wfal 1326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-an 361  df-nan 1297  df-fal 1329
  Copyright terms: Public domain W3C validator