Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  truniALTVD Unicode version

Theorem truniALTVD 28654
Description: The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 28305 is truniALTVD 28654 without virtual deductions and was automatically derived from truniALTVD 28654.
1::  |-  (. A. x  e.  A Tr  x  ->.  A. x  e.  A  Tr  x ).
2::  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( z  e.  y  /\  y  e.  U. A ) ).
3:2:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  z  e.  y ).
4:2:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  y  e.  U. A ).
5:4:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  E. q ( y  e.  q  /\  q  e.  A ) ).
6::  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  ( y  e.  q  /\  q  e.  A ) ).
7:6:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  y  e.  q ).
8:6:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  q  e.  A ).
9:1,8:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  [ q  /  x ] Tr  x ).
10:8,9:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  Tr  q ).
11:3,7,10:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  z  e.  q ).
12:11,8:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A ) ,  ( y  e.  q  /\  q  e.  A )  ->.  z  e.  U. A ).
13:12:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
14:13:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  A. q ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
15:14:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  ( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
16:5,15:  |-  (. A. x  e.  A Tr  x ,. ( z  e.  y  /\  y  e.  U. A )  ->.  z  e.  U. A ).
17:16:  |-  (. A. x  e.  A Tr  x  ->.  ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  U. A ) ).
18:17:  |-  (. A. x  e.  A Tr  x  ->.  A. z A. y ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  U. A ) ).
19:18:  |-  (. A. x  e.  A Tr  x  ->.  Tr  U. A ).
qed:19:  |-  ( A. x  e.  A Tr  x  ->  Tr  U. A )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truniALTVD  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Distinct variable group:    x, A

Proof of Theorem truniALTVD
Dummy variables  q 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 28385 . . . . . . . 8  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  ( z  e.  y  /\  y  e.  U. A ) ).
2 simpr 447 . . . . . . . 8  |-  ( ( z  e.  y  /\  y  e.  U. A )  ->  y  e.  U. A )
31, 2e2 28403 . . . . . . 7  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  y  e.  U. A ).
4 eluni 3830 . . . . . . . 8  |-  ( y  e.  U. A  <->  E. q
( y  e.  q  /\  q  e.  A
) )
54biimpi 186 . . . . . . 7  |-  ( y  e.  U. A  ->  E. q ( y  e.  q  /\  q  e.  A ) )
63, 5e2 28403 . . . . . 6  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  E. q
( y  e.  q  /\  q  e.  A
) ).
7 simpl 443 . . . . . . . . . . . 12  |-  ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  y )
81, 7e2 28403 . . . . . . . . . . 11  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  z  e.  y ).
9 idn3 28387 . . . . . . . . . . . 12  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  ( y  e.  q  /\  q  e.  A
) ).
10 simpl 443 . . . . . . . . . . . 12  |-  ( ( y  e.  q  /\  q  e.  A )  ->  y  e.  q )
119, 10e3 28512 . . . . . . . . . . 11  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  y  e.  q ).
12 simpr 447 . . . . . . . . . . . . 13  |-  ( ( y  e.  q  /\  q  e.  A )  ->  q  e.  A )
139, 12e3 28512 . . . . . . . . . . . 12  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  q  e.  A ).
14 idn1 28342 . . . . . . . . . . . . 13  |-  (. A. x  e.  A  Tr  x 
->.  A. x  e.  A  Tr  x ).
15 rspsbc 3069 . . . . . . . . . . . . . 14  |-  ( q  e.  A  ->  ( A. x  e.  A  Tr  x  ->  [. q  /  x ]. Tr  x
) )
1615com12 27 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  Tr  x  ->  ( q  e.  A  ->  [. q  /  x ]. Tr  x ) )
1714, 13, 16e13 28523 . . . . . . . . . . . 12  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  [. q  /  x ]. Tr  x ).
18 trsbc 28304 . . . . . . . . . . . . 13  |-  ( q  e.  A  ->  ( [. q  /  x ]. Tr  x  <->  Tr  q
) )
1918biimpd 198 . . . . . . . . . . . 12  |-  ( q  e.  A  ->  ( [. q  /  x ]. Tr  x  ->  Tr  q ) )
2013, 17, 19e33 28509 . . . . . . . . . . 11  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  Tr  q ).
21 trel 4120 . . . . . . . . . . . 12  |-  ( Tr  q  ->  ( (
z  e.  y  /\  y  e.  q )  ->  z  e.  q ) )
2221exp3acom3r 1360 . . . . . . . . . . 11  |-  ( z  e.  y  ->  (
y  e.  q  -> 
( Tr  q  -> 
z  e.  q ) ) )
238, 11, 20, 22e233 28540 . . . . . . . . . 10  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  z  e.  q ).
24 elunii 3832 . . . . . . . . . . 11  |-  ( ( z  e.  q  /\  q  e.  A )  ->  z  e.  U. A
)
2524ex 423 . . . . . . . . . 10  |-  ( z  e.  q  ->  (
q  e.  A  -> 
z  e.  U. A
) )
2623, 13, 25e33 28509 . . . . . . . . 9  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A ) ,. ( y  e.  q  /\  q  e.  A
) 
->.  z  e.  U. A ).
2726in3 28381 . . . . . . . 8  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  ( (
y  e.  q  /\  q  e.  A )  ->  z  e.  U. A
) ).
2827gen21 28391 . . . . . . 7  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  A. q
( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
29 19.23v 1832 . . . . . . . 8  |-  ( A. q ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A )  <->  ( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) )
3029biimpi 186 . . . . . . 7  |-  ( A. q ( ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A )  -> 
( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A
) )
3128, 30e2 28403 . . . . . 6  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  ( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A ) ).
32 pm2.27 35 . . . . . 6  |-  ( E. q ( y  e.  q  /\  q  e.  A )  ->  (
( E. q ( y  e.  q  /\  q  e.  A )  ->  z  e.  U. A
)  ->  z  e.  U. A ) )
336, 31, 32e22 28443 . . . . 5  |-  (. A. x  e.  A  Tr  x ,. ( z  e.  y  /\  y  e. 
U. A )  ->.  z  e.  U. A ).
3433in2 28377 . . . 4  |-  (. A. x  e.  A  Tr  x 
->.  ( ( z  e.  y  /\  y  e. 
U. A )  -> 
z  e.  U. A
) ).
3534gen12 28390 . . 3  |-  (. A. x  e.  A  Tr  x 
->.  A. z A. y
( ( z  e.  y  /\  y  e. 
U. A )  -> 
z  e.  U. A
) ).
36 dftr2 4115 . . . 4  |-  ( Tr 
U. A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  U. A )  -> 
z  e.  U. A
) )
3736biimpri 197 . . 3  |-  ( A. z A. y ( ( z  e.  y  /\  y  e.  U. A )  ->  z  e.  U. A )  ->  Tr  U. A )
3835, 37e1_ 28399 . 2  |-  (. A. x  e.  A  Tr  x 
->.  Tr  U. A ).
3938in1 28339 1  |-  ( A. x  e.  A  Tr  x  ->  Tr  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528    e. wcel 1684   A.wral 2543   [.wsbc 2991   U.cuni 3827   Tr wtr 4113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-sbc 2992  df-in 3159  df-ss 3166  df-uni 3828  df-tr 4114  df-vd1 28338  df-vd2 28347  df-vd3 28359
  Copyright terms: Public domain W3C validator