MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truxorfal Structured version   Unicode version

Theorem truxorfal 1369
Description: A  \/_ identity. (Contributed by David A. Wheeler, 8-May-2015.)
Assertion
Ref Expression
truxorfal  |-  ( (  T.  \/_  F.  )  <->  T.  )

Proof of Theorem truxorfal
StepHypRef Expression
1 df-xor 1315 . . 3  |-  ( (  T.  \/_  F.  )  <->  -.  (  T.  <->  F.  )
)
2 trubifal 1361 . . 3  |-  ( (  T.  <->  F.  )  <->  F.  )
31, 2xchbinx 303 . 2  |-  ( (  T.  \/_  F.  )  <->  -. 
F.  )
4 notfal 1359 . 2  |-  ( -. 
F. 
<->  T.  )
53, 4bitri 242 1  |-  ( (  T.  \/_  F.  )  <->  T.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    \/_ wxo 1314    T. wtru 1326    F. wfal 1327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-xor 1315  df-tru 1329  df-fal 1330
  Copyright terms: Public domain W3C validator