MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsetndx Unicode version

Theorem tsetndx 13602
Description: Index value of the df-tset 13536 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tsetndx  |-  (TopSet `  ndx )  =  9

Proof of Theorem tsetndx
StepHypRef Expression
1 df-tset 13536 . 2  |- TopSet  = Slot  9
2 9nn 10129 . 2  |-  9  e.  NN
31, 2ndxarg 13477 1  |-  (TopSet `  ndx )  =  9
Colors of variables: wff set class
Syntax hints:    = wceq 1652   ` cfv 5445   9c9 10045   ndxcnx 13454  TopSetcts 13523
This theorem is referenced by:  topgrpstr  13604  otpsstr  13611  odrngstr  13622  imasvalstr  13663  ipostr  14567  psrvalstr  16418  cnfldstr  16693  indistpsx  17062  tuslem  18285  setsmsbas  18493  setsmsds  18494  tnglem  18669  tngds  18677  zlmtset  24337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-i2m1 9047  ax-1ne0 9048  ax-rrecex 9051  ax-cnre 9052
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-recs 6624  df-rdg 6659  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-ndx 13460  df-slot 13461  df-tset 13536
  Copyright terms: Public domain W3C validator