MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsetndx Structured version   Unicode version

Theorem tsetndx 13645
Description: Index value of the df-tset 13579 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tsetndx  |-  (TopSet `  ndx )  =  9

Proof of Theorem tsetndx
StepHypRef Expression
1 df-tset 13579 . 2  |- TopSet  = Slot  9
2 9nn 10171 . 2  |-  9  e.  NN
31, 2ndxarg 13520 1  |-  (TopSet `  ndx )  =  9
Colors of variables: wff set class
Syntax hints:    = wceq 1653   ` cfv 5483   9c9 10087   ndxcnx 13497  TopSetcts 13566
This theorem is referenced by:  topgrpstr  13647  otpsstr  13654  odrngstr  13665  imasvalstr  13706  ipostr  14610  psrvalstr  16461  cnfldstr  16736  indistpsx  17105  tuslem  18328  setsmsbas  18536  setsmsds  18537  tnglem  18712  tngds  18720  zlmtset  24380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-i2m1 9089  ax-1ne0 9090  ax-rrecex 9093  ax-cnre 9094
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-recs 6662  df-rdg 6697  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-7 10094  df-8 10095  df-9 10096  df-ndx 13503  df-slot 13504  df-tset 13579
  Copyright terms: Public domain W3C validator