Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk1 Structured version   Unicode version

Theorem tsk1 8640
 Description: One is an element of a non-empty Tarski's class. (Contributed by FL, 22-Feb-2011.)
Assertion
Ref Expression
tsk1

Proof of Theorem tsk1
StepHypRef Expression
1 df1o2 6737 . 2
2 tsk0 8639 . . 3
3 tsksn 8636 . . 3
42, 3syldan 458 . 2
51, 4syl5eqel 2521 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wcel 1726   wne 2600  c0 3629  csn 3815  c1o 6718  ctsk 8624 This theorem is referenced by:  tsk2  8641 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-pow 4378 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-br 4214  df-suc 4588  df-1o 6725  df-tsk 8625
 Copyright terms: Public domain W3C validator