MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsken Unicode version

Theorem tsken 8589
Description: 3rd axiom of a Tarski's class. A subset of a Tarski's class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsken  |-  ( ( T  e.  Tarski  /\  A  C_  T )  ->  ( A  ~~  T  \/  A  e.  T ) )

Proof of Theorem tsken
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpw2g 4327 . . 3  |-  ( T  e.  Tarski  ->  ( A  e. 
~P T  <->  A  C_  T
) )
21biimpar 472 . 2  |-  ( ( T  e.  Tarski  /\  A  C_  T )  ->  A  e.  ~P T )
3 eltskg 8585 . . . . 5  |-  ( T  e.  Tarski  ->  ( T  e. 
Tarski 
<->  ( A. x  e.  T  ( ~P x  C_  T  /\  E. y  e.  T  ~P x  C_  y )  /\  A. x  e.  ~P  T
( x  ~~  T  \/  x  e.  T
) ) ) )
43ibi 233 . . . 4  |-  ( T  e.  Tarski  ->  ( A. x  e.  T  ( ~P x  C_  T  /\  E. y  e.  T  ~P x  C_  y )  /\  A. x  e.  ~P  T
( x  ~~  T  \/  x  e.  T
) ) )
54simprd 450 . . 3  |-  ( T  e.  Tarski  ->  A. x  e.  ~P  T ( x  ~~  T  \/  x  e.  T ) )
6 breq1 4179 . . . . 5  |-  ( x  =  A  ->  (
x  ~~  T  <->  A  ~~  T ) )
7 eleq1 2468 . . . . 5  |-  ( x  =  A  ->  (
x  e.  T  <->  A  e.  T ) )
86, 7orbi12d 691 . . . 4  |-  ( x  =  A  ->  (
( x  ~~  T  \/  x  e.  T
)  <->  ( A  ~~  T  \/  A  e.  T ) ) )
98rspccva 3015 . . 3  |-  ( ( A. x  e.  ~P  T ( x  ~~  T  \/  x  e.  T )  /\  A  e.  ~P T )  -> 
( A  ~~  T  \/  A  e.  T
) )
105, 9sylan 458 . 2  |-  ( ( T  e.  Tarski  /\  A  e.  ~P T )  -> 
( A  ~~  T  \/  A  e.  T
) )
112, 10syldan 457 1  |-  ( ( T  e.  Tarski  /\  A  C_  T )  ->  ( A  ~~  T  \/  A  e.  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   E.wrex 2671    C_ wss 3284   ~Pcpw 3763   class class class wbr 4176    ~~ cen 7069   Tarskictsk 8583
This theorem is referenced by:  tskssel  8592  inttsk  8609  r1tskina  8617  tskuni  8618
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-br 4177  df-tsk 8584
  Copyright terms: Public domain W3C validator