Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpw Structured version   Unicode version

Theorem tskpw 8628
 Description: 2nd axiom of a Tarski's class. The powerset of an element of a Tarski's class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskpw

Proof of Theorem tskpw
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eltsk2g 8626 . . . . 5
21ibi 233 . . . 4
32simpld 446 . . 3
4 simpr 448 . . . 4
54ralimi 2781 . . 3
63, 5syl 16 . 2
7 pweq 3802 . . . 4
87eleq1d 2502 . . 3
98rspccva 3051 . 2
106, 9sylan 458 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 358   wa 359   wceq 1652   wcel 1725  wral 2705   wss 3320  cpw 3799   class class class wbr 4212   cen 7106  ctsk 8623 This theorem is referenced by:  tsksn  8635  tsksuc  8637  tskr1om  8642  inttsk  8649  tskcard  8656  tskwun  8659  grutsk1  8696 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-pow 4377 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-tsk 8624
 Copyright terms: Public domain W3C validator