Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskss Unicode version

Theorem tskss 8396
 Description: The subsets of an element of a Tarski's class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tskss

Proof of Theorem tskss
StepHypRef Expression
1 elpw2g 4190 . . . 4
21adantl 452 . . 3
3 tskpwss 8390 . . . 4
43sseld 3192 . . 3
52, 4sylbird 226 . 2
653impia 1148 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wcel 1696   wss 3165  cpw 3638  ctsk 8386 This theorem is referenced by:  tskin  8397  tsksn  8398  tsksuc  8400  tsk0  8401  tskr1om2  8406  tskint  8423  vtarsuelt  25998 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-tsk 8387
 Copyright terms: Public domain W3C validator