MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskurn Unicode version

Theorem tskurn 8427
Description: A transitive Tarski's class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskurn  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  U. ran  F  e.  T )

Proof of Theorem tskurn
StepHypRef Expression
1 simp1l 979 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  T  e.  Tarski )
2 simp1r 980 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  Tr  T )
3 frn 5411 . . . 4  |-  ( F : A --> T  ->  ran  F  C_  T )
433ad2ant3 978 . . 3  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  ran  F  C_  T
)
5 tskwe2 8411 . . . . . . 7  |-  ( T  e.  Tarski  ->  T  e.  dom  card )
61, 5syl 15 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  T  e.  dom  card )
7 simp2 956 . . . . . . 7  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  A  e.  T
)
8 trss 4138 . . . . . . 7  |-  ( Tr  T  ->  ( A  e.  T  ->  A  C_  T ) )
92, 7, 8sylc 56 . . . . . 6  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  A  C_  T
)
10 ssnum 7682 . . . . . 6  |-  ( ( T  e.  dom  card  /\  A  C_  T )  ->  A  e.  dom  card )
116, 9, 10syl2anc 642 . . . . 5  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  A  e.  dom  card )
12 ffn 5405 . . . . . . 7  |-  ( F : A --> T  ->  F  Fn  A )
13 dffn4 5473 . . . . . . 7  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
1412, 13sylib 188 . . . . . 6  |-  ( F : A --> T  ->  F : A -onto-> ran  F
)
15143ad2ant3 978 . . . . 5  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  F : A -onto-> ran  F )
16 fodomnum 7700 . . . . 5  |-  ( A  e.  dom  card  ->  ( F : A -onto-> ran  F  ->  ran  F  ~<_  A ) )
1711, 15, 16sylc 56 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  ran  F  ~<_  A )
18 tsksdom 8394 . . . . 5  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  A  ~<  T )
191, 7, 18syl2anc 642 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  A  ~<  T )
20 domsdomtr 7012 . . . 4  |-  ( ( ran  F  ~<_  A  /\  A  ~<  T )  ->  ran  F  ~<  T )
2117, 19, 20syl2anc 642 . . 3  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  ran  F  ~<  T )
22 tskssel 8395 . . 3  |-  ( ( T  e.  Tarski  /\  ran  F 
C_  T  /\  ran  F 
~<  T )  ->  ran  F  e.  T )
231, 4, 21, 22syl3anc 1182 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  ran  F  e.  T )
24 tskuni 8421 . 2  |-  ( ( T  e.  Tarski  /\  Tr  T  /\  ran  F  e.  T )  ->  U. ran  F  e.  T )
251, 2, 23, 24syl3anc 1182 1  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  F : A --> T )  ->  U. ran  F  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1696    C_ wss 3165   U.cuni 3843   class class class wbr 4039   Tr wtr 4129   dom cdm 4705   ran crn 4706    Fn wfn 5266   -->wf 5267   -onto->wfo 5269    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584   Tarskictsk 8386
This theorem is referenced by:  grutsk1  8459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-smo 6379  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-r1 7452  df-card 7588  df-aleph 7589  df-cf 7590  df-acn 7591  df-ac 7759  df-wina 8322  df-ina 8323  df-tsk 8387
  Copyright terms: Public domain W3C validator