MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskxp Unicode version

Theorem tskxp 8622
Description: The cross product of two elements of a transitive Tarski's class is an element of the class. JFM CLASSES2 th. 67 (partly). (Contributed by FL, 15-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskxp  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  B  e.  T )  ->  ( A  X.  B
)  e.  T )

Proof of Theorem tskxp
StepHypRef Expression
1 ne0i 3598 . . . 4  |-  ( A  e.  T  ->  T  =/=  (/) )
2 tskwun 8619 . . . . 5  |-  ( ( T  e.  Tarski  /\  Tr  T  /\  T  =/=  (/) )  ->  T  e. WUni )
323expa 1153 . . . 4  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  T  =/=  (/) )  ->  T  e. WUni )
41, 3sylan2 461 . . 3  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T )  ->  T  e. WUni )
543adant3 977 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  B  e.  T )  ->  T  e. WUni )
6 simp2 958 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  B  e.  T )  ->  A  e.  T )
7 simp3 959 . 2  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  B  e.  T )  ->  B  e.  T )
85, 6, 7wunxp 8559 1  |-  ( ( ( T  e.  Tarski  /\ 
Tr  T )  /\  A  e.  T  /\  B  e.  T )  ->  ( A  X.  B
)  e.  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1721    =/= wne 2571   (/)c0 3592   Tr wtr 4266    X. cxp 4839  WUnicwun 8535   Tarskictsk 8583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-ac2 8303
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-se 4506  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-smo 6571  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-map 6983  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-oi 7439  df-har 7486  df-r1 7650  df-card 7786  df-aleph 7787  df-cf 7788  df-acn 7789  df-ac 7957  df-wina 8519  df-ina 8520  df-wun 8537  df-tsk 8584
  Copyright terms: Public domain W3C validator