MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Unicode version

Theorem tsmsf1o 18166
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b  |-  B  =  ( Base `  G
)
tsmsf1o.1  |-  ( ph  ->  G  e. CMnd )
tsmsf1o.2  |-  ( ph  ->  G  e.  TopSp )
tsmsf1o.a  |-  ( ph  ->  A  e.  V )
tsmsf1o.f  |-  ( ph  ->  F : A --> B )
tsmsf1o.s  |-  ( ph  ->  H : C -1-1-onto-> A )
Assertion
Ref Expression
tsmsf1o  |-  ( ph  ->  ( G tsums  F )  =  ( G tsums  ( F  o.  H )
) )

Proof of Theorem tsmsf1o
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11  |-  ( ph  ->  H : C -1-1-onto-> A )
2 f1opwfi 7402 . . . . . . . . . . 11  |-  ( H : C -1-1-onto-> A  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -1-1-onto-> ( ~P A  i^i  Fin ) )
31, 2syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -1-1-onto-> ( ~P A  i^i  Fin ) )
4 f1of 5666 . . . . . . . . . 10  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin )
-1-1-onto-> ( ~P A  i^i  Fin )  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
53, 4syl 16 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
6 eqid 2435 . . . . . . . . . 10  |-  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H
" a ) )  =  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )
76fmpt 5882 . . . . . . . . 9  |-  ( A. a  e.  ( ~P C  i^i  Fin ) ( H " a )  e.  ( ~P A  i^i  Fin )  <->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
85, 7sylibr 204 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ( ~P C  i^i  Fin ) ( H "
a )  e.  ( ~P A  i^i  Fin ) )
9 sseq1 3361 . . . . . . . . . . 11  |-  ( y  =  ( H "
a )  ->  (
y  C_  z  <->  ( H " a )  C_  z
) )
109imbi1d 309 . . . . . . . . . 10  |-  ( y  =  ( H "
a )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
1110ralbidv 2717 . . . . . . . . 9  |-  ( y  =  ( H "
a )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
126, 11rexrnmpt 5871 . . . . . . . 8  |-  ( A. a  e.  ( ~P C  i^i  Fin ) ( H " a )  e.  ( ~P A  i^i  Fin )  ->  ( E. y  e.  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
138, 12syl 16 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
14 f1ofo 5673 . . . . . . . . 9  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin )
-1-1-onto-> ( ~P A  i^i  Fin )  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -onto-> ( ~P A  i^i  Fin ) )
15 forn 5648 . . . . . . . . 9  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin ) -onto-> ( ~P A  i^i  Fin )  ->  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )  =  ( ~P A  i^i  Fin ) )
163, 14, 153syl 19 . . . . . . . 8  |-  ( ph  ->  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )  =  ( ~P A  i^i  Fin ) )
1716rexeqdv 2903 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
18 imaeq2 5191 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  ( H " a )  =  ( H " b
) )
1918cbvmptv 4292 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H
" a ) )  =  ( b  e.  ( ~P C  i^i  Fin )  |->  ( H "
b ) )
2019fmpt 5882 . . . . . . . . . . . . 13  |-  ( A. b  e.  ( ~P C  i^i  Fin ) ( H " b )  e.  ( ~P A  i^i  Fin )  <->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
215, 20sylibr 204 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( ~P C  i^i  Fin ) ( H "
b )  e.  ( ~P A  i^i  Fin ) )
22 sseq2 3362 . . . . . . . . . . . . . 14  |-  ( z  =  ( H "
b )  ->  (
( H " a
)  C_  z  <->  ( H " a )  C_  ( H " b ) ) )
23 reseq2 5133 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( H "
b )  ->  ( F  |`  z )  =  ( F  |`  ( H " b ) ) )
2423oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( z  =  ( H "
b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  ( H " b ) ) ) )
2524eleq1d 2501 . . . . . . . . . . . . . 14  |-  ( z  =  ( H "
b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u ) )
2622, 25imbi12d 312 . . . . . . . . . . . . 13  |-  ( z  =  ( H "
b )  ->  (
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2719, 26ralrnmpt 5870 . . . . . . . . . . . 12  |-  ( A. b  e.  ( ~P C  i^i  Fin ) ( H " b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2821, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2916raleqdv 2902 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
3028, 29bitr3d 247 . . . . . . . . . 10  |-  ( ph  ->  ( A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u )  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
3130adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. b  e.  ( ~P C  i^i  Fin )
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <->  A. z  e.  ( ~P A  i^i  Fin )
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) ) )
32 f1of1 5665 . . . . . . . . . . . . . 14  |-  ( H : C -1-1-onto-> A  ->  H : C -1-1-> A )
331, 32syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  H : C -1-1-> A
)
3433ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  H : C -1-1-> A )
35 elfpw 7400 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ~P C  i^i  Fin )  <->  ( a  C_  C  /\  a  e. 
Fin ) )
3635simplbi 447 . . . . . . . . . . . . 13  |-  ( a  e.  ( ~P C  i^i  Fin )  ->  a  C_  C )
3736ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  a  C_  C )
38 elfpw 7400 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P C  i^i  Fin )  <->  ( b  C_  C  /\  b  e. 
Fin ) )
3938simplbi 447 . . . . . . . . . . . . 13  |-  ( b  e.  ( ~P C  i^i  Fin )  ->  b  C_  C )
4039adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  b  C_  C )
41 f1imass 6002 . . . . . . . . . . . 12  |-  ( ( H : C -1-1-> A  /\  ( a  C_  C  /\  b  C_  C ) )  ->  ( ( H " a )  C_  ( H " b )  <-> 
a  C_  b )
)
4234, 37, 40, 41syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( H " a
)  C_  ( H " b )  <->  a  C_  b ) )
43 tsmsf1o.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
44 eqid 2435 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  =  ( 0g `  G
)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e. CMnd )
4645ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  G  e. CMnd )
4738simprbi 451 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P C  i^i  Fin )  ->  b  e.  Fin )
4847adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  b  e.  Fin )
49 f1ores 5681 . . . . . . . . . . . . . . . . 17  |-  ( ( H : C -1-1-> A  /\  b  C_  C )  ->  ( H  |`  b ) : b -1-1-onto-> ( H " b ) )
5034, 40, 49syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H  |`  b ) : b -1-1-onto-> ( H " b
) )
51 f1ofo 5673 . . . . . . . . . . . . . . . 16  |-  ( ( H  |`  b ) : b -1-1-onto-> ( H " b
)  ->  ( H  |`  b ) : b
-onto-> ( H " b
) )
5250, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H  |`  b ) : b -onto-> ( H "
b ) )
53 fofi 7384 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  Fin  /\  ( H  |`  b ) : b -onto-> ( H
" b ) )  ->  ( H "
b )  e.  Fin )
5448, 52, 53syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H " b )  e. 
Fin )
55 tsmsf1o.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> B )
5655ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  F : A --> B )
57 imassrn 5208 . . . . . . . . . . . . . . . 16  |-  ( H
" b )  C_  ran  H
581ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  H : C -1-1-onto-> A )
59 f1ofo 5673 . . . . . . . . . . . . . . . . 17  |-  ( H : C -1-1-onto-> A  ->  H : C -onto-> A )
60 forn 5648 . . . . . . . . . . . . . . . . 17  |-  ( H : C -onto-> A  ->  ran  H  =  A )
6158, 59, 603syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ran  H  =  A )
6257, 61syl5sseq 3388 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H " b )  C_  A )
63 fssres 5602 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> B  /\  ( H " b ) 
C_  A )  -> 
( F  |`  ( H " b ) ) : ( H "
b ) --> B )
6456, 62, 63syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( F  |`  ( H "
b ) ) : ( H " b
) --> B )
6554, 64fisuppfi 14765 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( `' ( F  |`  ( H " b ) ) " ( _V 
\  { ( 0g
`  G ) } ) )  e.  Fin )
6643, 44, 46, 54, 64, 65, 50gsumf1o 15514 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  ( H " b ) ) )  =  ( G 
gsumg  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b ) ) ) )
67 df-ima 4883 . . . . . . . . . . . . . . . . 17  |-  ( H
" b )  =  ran  ( H  |`  b )
6867eqimss2i 3395 . . . . . . . . . . . . . . . 16  |-  ran  ( H  |`  b )  C_  ( H " b )
69 cores 5365 . . . . . . . . . . . . . . . 16  |-  ( ran  ( H  |`  b
)  C_  ( H " b )  ->  (
( F  |`  ( H " b ) )  o.  ( H  |`  b ) )  =  ( F  o.  ( H  |`  b ) ) )
7068, 69ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b
) )  =  ( F  o.  ( H  |`  b ) )
71 resco 5366 . . . . . . . . . . . . . . 15  |-  ( ( F  o.  H )  |`  b )  =  ( F  o.  ( H  |`  b ) )
7270, 71eqtr4i 2458 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b
) )  =  ( ( F  o.  H
)  |`  b )
7372oveq2i 6084 . . . . . . . . . . . . 13  |-  ( G 
gsumg  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b ) ) )  =  ( G  gsumg  ( ( F  o.  H )  |`  b ) )
7466, 73syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  ( H " b ) ) )  =  ( G 
gsumg  ( ( F  o.  H )  |`  b
) ) )
7574eleq1d 2501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  o.  H
)  |`  b ) )  e.  u ) )
7642, 75imbi12d 312 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <-> 
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) )
7776ralbidva 2713 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. b  e.  ( ~P C  i^i  Fin )
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <->  A. b  e.  ( ~P C  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) )
7831, 77bitr3d 247 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
7978rexbidva 2714 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
8013, 17, 793bitr3d 275 . . . . . 6  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
8180imbi2d 308 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  ( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) )
8281ralbidv 2717 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) )
8382anbi2d 685 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )  <-> 
( x  e.  B  /\  A. u  e.  (
TopOpen `  G ) ( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) ) ) )
84 eqid 2435 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
85 eqid 2435 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
86 tsmsf1o.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
87 tsmsf1o.a . . . 4  |-  ( ph  ->  A  e.  V )
8843, 84, 85, 45, 86, 87, 55eltsms 18154 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
89 eqid 2435 . . . 4  |-  ( ~P C  i^i  Fin )  =  ( ~P C  i^i  Fin )
90 f1dmex 5963 . . . . 5  |-  ( ( H : C -1-1-> A  /\  A  e.  V
)  ->  C  e.  _V )
9133, 87, 90syl2anc 643 . . . 4  |-  ( ph  ->  C  e.  _V )
92 f1of 5666 . . . . . 6  |-  ( H : C -1-1-onto-> A  ->  H : C
--> A )
931, 92syl 16 . . . . 5  |-  ( ph  ->  H : C --> A )
94 fco 5592 . . . . 5  |-  ( ( F : A --> B  /\  H : C --> A )  ->  ( F  o.  H ) : C --> B )
9555, 93, 94syl2anc 643 . . . 4  |-  ( ph  ->  ( F  o.  H
) : C --> B )
9643, 84, 89, 45, 86, 91, 95eltsms 18154 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  o.  H ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) ) )
9783, 88, 963bitr4d 277 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  x  e.  ( G tsums  ( F  o.  H ) ) ) )
9897eqrdv 2433 1  |-  ( ph  ->  ( G tsums  F )  =  ( G tsums  ( F  o.  H )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   {csn 3806    e. cmpt 4258   ran crn 4871    |` cres 4872   "cima 4873    o. ccom 4874   -->wf 5442   -1-1->wf1 5443   -onto->wfo 5444   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   Fincfn 7101   Basecbs 13461   TopOpenctopn 13641   0gc0g 13715    gsumg cgsu 13716  CMndccmn 15404   TopSpctps 16953   tsums ctsu 18147
This theorem is referenced by:  esumf1o  24437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-0g 13719  df-gsum 13720  df-mnd 14682  df-cntz 15108  df-cmn 15406  df-fbas 16691  df-fg 16692  df-top 16955  df-topon 16958  df-topsp 16959  df-ntr 17076  df-nei 17154  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-tsms 18148
  Copyright terms: Public domain W3C validator